Flavor-dependent long-range neutrino interactions


A few years ago, Sanjib Agarwalla and I published a paper on looking for new, flavor dependent, long-range neutrino-electron interactions that could affect neutrino oscillations. The new interactions are introduced by gauging lepton-number symmetries Le-Lmu and Le-Ltau. They are mediated by new neutral vector bosons, Z’. Because we considered them to be ultra-light, with masses below 10^{-10} eV, the interaction range is ultra-long. This allowed us to use the large collections of electrons in the local and distant Universe — the Earth, Moon, Sun, Milky Way, and cosmological electrons — as sources of the new matter potential, and the measurement of the flavor composition of high-energy astrophysical neutrinos as IceCube as the observable:

Universe’s Worth of Electrons to Probe Long-Range Interactions of High-Energy Astrophysical Neutrinos
Mauricio Bustamante, Sanjib Kumar Agarwalla
Phys. Rev. Lett. 6, 061103 (2019) [1808.02042]

This week we uploaded to the arXiv two follow-up works, in collaboration with Sanjib’s students Masoom and Sudipta and postdoc Ashish:

Present and future constraints on flavor-dependent long-range interactions of high-energy astrophysical neutrinos
Sanjib Kumar Agarwalla, Mauricio Bustamante, Sudipta Das, Ashish Narang

Flavor-dependent long-range neutrino interactions in DUNE & T2HK: alone they constrain, together they discover
Masoom Singh, Mauricio Bustamante, Sanjib Kumar Agarwalla

In the first paper, we revisit, revamp, and extend the analysis that we did in 2018, using the flavor composition of high-energy astrophysical neutrinos. There two main improvements. First, we now use a Bayesian statistical analysis, which allows us to claim constraints at higher significance than in the original paper. It also allows us to consistently treat the uncertainties in neutrino mixing parameters and in the measurement of the flavor composition. Second, we now consider also new neutrino-neutron interactions, introduced by gauging Lmu-Ltau. The constraints that we get on the coupling strength are these:

From the abstract: We find that, already today, the IceCube neutrino telescope demonstrates potential to constrain flavor-dependent long-range interactions significantly better than existing constraints, motivating further analysis. 

In the second paper, we study the same problem, but now using next-generation long-baseline neutrino experiments DUNE and T2HK. The neutrino energies are much lower, MeV-GeV compared to the TeV-PeV of astrophysical neutrinos. However, the event rates are enormous, and that makes DUNE and T2HK sensitive to even subtle modifications of the oscillation probabilities. In this case, the constraints are these:

From the abstract: Alone, DUNE and T2HK may strongly constrain long-range interactions, setting new limits on their coupling strength for mediators lighter than 10^{−18} eV. However, if the new interactions are subdominant, then both DUNE and T2HK, together, will be needed to discover them, since their combination lifts parameter degeneracies that weaken their individual sensitivity.

NBIA Neutrino Summer School 2023


Join us in the 2023 edition of the NBIA PhD Summer School on Neutrinos: Here, There & Everywhere!

💻 nbia.nbi.ku.dk/neutrino2023

📌 Where? Niels Bohr Institute, Copenhagen, Denmark

📅 When? July 17-21, 2023

🙋 For whom? PhD students and advanced MSc students

👥 Participation mode? In person (remote participation possible if you can’t come)

💵 Participation fee: None

❓ Questions? E-mail the local organizers (addresses on the school page)

⏳ Registration deadline: April 30 (register early; limited capacity)

Bump-hunting in the diffuse flux of high-energy cosmic neutrinos


If the high-energy (TeV-PeV) neutrinos discovered by IceCube are made via proton-photon interactions in astrophysical sources, their energy spectrum may have a bump-like feature at a characteristic energy. We search for such a feature in present-day IceCube High-Energy Starting Events (HESE), on top of a power-law spectrum expected from alternative production via proton-proton interactions, and make forecasts using the expected exposure of upcoming neutrino telescopes.

We find no significant evidence of bumps in 7.5 years of HESE data, but a bump centered at ~1 PeV is only marginally disfavored. If the true flux does contain such a bump it could be discovered by 2027 using the combined exposure of IceCube, Baikal-GVD, and KM3NeT:

For more information, including interpreting limits on bumps as limits on the properties of the neutrino source population, see

Bump-hunting in the diffuse flux of high-energy cosmic neutrinos
Damiano F. G. Fiorillo, Mauricio Bustamante

Discovering the diffuse flux of UHE neutrinos


Fifty years ago, Berezinsky first predicted ultra-high-energy (UHE) neutrinos, the most energetic ones expected, about a thousand times more so than those seen by IceCube so far. Today, we have yet to discover them, but this may finally change in the near future!

IceCube-Gen2, and other upcoming neutrino telescopes, have a real chance of discovering the long-sought diffuse flux of UHE neutrinos. In a new paper, led by Víctor B. Valera and in collaboration with Christian Glaser, we make detailed, robust, and realistic discovery prospects:

Near-future discovery of the diffuse flux of ultra-high-energy cosmic neutrinos
Victor Branco Valera, Mauricio Bustamante, Christian Glaser

Our results are promising: we find that if we are lucky this can happen within only a handful of years of operation! Figures 1 and 14 are the money plots.  Figure 1, reproduced below, shows that most flux models can be discovered within ten years of Gen2 and most within a handful of years. 

Figure 14, in the paper, shows that, in the event of flux discovery, most models can be distinguished from each other.

This paper is a companion to two earlier papers of ours that use the same computational framework that accounts for theory and experimental nuance to make forecasts:

Discovering UHE neutrino point sources


In the near future, we expect that next-generation neutrino telescopes will provide us with the sensitivity required to discover the first sources of UHE neutrino point sources (> 100 PeV). In a recent paper, led by postdoc Damiano Fiorillo, we provided detailed forecasts for what the radio array of IceCube-Gen2 could achieve by looking for neutrino multiplets:

Read more at:

Near-future discovery of point sources of ultra-high-energy neutrinos
Damiano F.G. Fiorillo, Mauricio Bustamante, Victor B. Valera

Measuring the UHE neutrino-nucleon cross section


Recently, we put out a paper, led by PhD student Victor Valera, where we present the first complete forecasts of how well the planned radio array of IceCube-Gen2 will be able to measure the UHE (> 100 PeV) neutrino-nucleon cross section. The results are encouraging!

Read more at:

The ultra-high-energy neutrino-nucleon cross section: measurement forecasts for an era of cosmic EeV-neutrino discovery
Victor Branco Valera, Mauricio Bustamante, Christian Glaser

NBIA Neutrino Summer School 2022


Join us in the 2022 edition of the NBIA PhD Summer School on Neutrinos: Here, There & Everywhere. This time it will be mainly an in-person event!


📌 Where? Niels Bohr Institute, Copenhagen, Denmark

📅 When? July 11-15

🙋 For whom? PhD students and advanced MSc students

👥 Participation mode? In person (unless otherwise advisable)

💵 What’s the damage? No participation fee

❓ Questions? E-mail the local organizers (addresses on the school page)

⏳ Registration deadline: March 31 (register early; limited capacity)

NBI Neutrino Summer School 2021


Our week-long online NBI Neutrino Summer School “Here, There & Everwhere” wrapped up today!

Find the slides for all talks and hands-on exercises on Indico.

The video recordings of all of the lectures and topical seminars are in our YouTube channel.

Thanks to our guest lecturers Joachim Kopp, Olga Mena, and Foeteini Oikonomou, to our topical seminar speakers from NBI Jason Koskinen, Tom Stuttard, Tyler Corbett, Oleg Ruchayskiy, Shashank Shalgar, and Rasmus Hansen, and to our eighteen student speakers from around the world.