Call for PhD position on high-energy cosmic neutrino physics


I am currently looking to hire one PhD student to work with me on high-energy cosmic neutrino physics at the Niels Bohr Institute starting in Fall of 2020.

This is a 3-year position, fully funded by the Villum Fonden program “Pushing neutrino physics to the cosmic frontier.”

Find more details on INSPIRE: .

Application deadline: April 15, 2020

Contact me if you have any questions.

Interview in El Comercio newspaper


Recently I was interviewed by El Comercio, the largest national newspaper in Perú, about neutrinos, particles physics, and my Villum Young Investigator grant.  The interview appeared online and in print form on February 22, 2020.  Here is a link to the online version (in Spanish):

Peruano recibe US$15 millones para estudiar los vacíos de la física de partículas

Weirdly, the interview made it to the front page of the print version of newspaper:



Villum Fonden Young Investigator Award


I was recently awarded a Villum Fonden Young Investigator Award (in the amount of ~10M DKK ~= 1.3M euro) to carry out the project “Pushing Neutrino Physics to the Cosmic Frontier”.

This starting grant will allow me to form my own research group at the Niels Bohr Institute, and to fund it for the coming five years. Come Fall 2020, I will become Assistant Professor at the NBI.

More information:

New limits on secret neutrino interactions using IceCube neutrinos


Using high-energy astrophysical neutrinos, with TeV-PeV energies, we have placed limits on secret neutrino-neutrino interactions for mediator masses in the 1-100 MeV range.

While propagating to Earth, high-energy astrophysical neutrinos may interact resonantly with the cosmic neutrino background.  This would introduce a gap in the energy spectrum of the high-energy neutrinos.  We looked for this gap in 6 years of publicly available IceCube High Energy Starting Events (HESE).

Bounds on secret neutrino interactions from high-energy astrophysical neutrinos
Mauricio Bustamante, Charlotte Amalie Rosenstroem, Shashank Shalgar, Irene Tamborra


This complements our earlier work (1912.09115), which used supernova neutrinos to place limits on secret interactions, both from neutrino interactions inside the supernova core and from the propagation of neutrinos to Earth (these are the regions labeled “Shashank et al.” in the plot above).

New supernova limits on secret neutrino interactions


Our paper on new limits on new, secret, neutrino-neutrino interactions beyond the Standard Model from core-collapse supernovae is out:

Core-collapse supernovae stymie secret neutrino interactions (1912.09115)
Shashank Shalgar, Irene Tamborra, Mauricio Bustamante


We find limits on the mass and coupling of the new mediator through which the secret interactions occur.  For mediator masses between 10 MeV and 15 GeV, our limits are the strongest to date.  For mediator masses above 100 MeV, our limits are the first.