New limits on neutrino decay from the Glashow resonance

Standard

In a new paper, I place new limits on the lifetime of the nu_1 and nu_2 neutrinos, assuming they decay into a visible nu_3, in the inverted neutrino mass ordering:

New limits on neutrino decay from the Glashow resonance of high-energy cosmic neutrinos
Mauricio Bustamante
arXiv: 2004.06844

To place my new limts, I put to practice a proposal that we published earlier (1610.02096), that uses the observation of the Glashow resonance in IceCube, at a few PeV, as evidence of the survival of nu_1 and nu_2.

I base our present-day results on the observation of the first Glashow resonance candidate by IceCube.  For nu_2, the limit on the lifetime is the best one to date.  For nu_1, it is comparable to the best one to date, coming from solar neutrinos.  The limits quickly improve with just a handful more of Glashow resonances observed.

fig_limits

Call for PhD position on high-energy cosmic neutrino physics

Standard

I am currently looking to hire one PhD student to work with me on high-energy cosmic neutrino physics at the Niels Bohr Institute starting in Fall of 2020.

This is a 3-year position, fully funded by the Villum Fonden program “Pushing neutrino physics to the cosmic frontier.”

Find more details on INSPIRE: https://labs.inspirehep.net/jobs/1781913 .

Application deadline: April 15, 2020

Contact me if you have any questions.

Interview in El Comercio newspaper

Standard

Recently I was interviewed by El Comercio, the largest national newspaper in Perú, about neutrinos, particles physics, and my Villum Young Investigator grant.  The interview appeared online and in print form on February 22, 2020.  Here is a link to the online version (in Spanish):

Peruano recibe US$15 millones para estudiar los vacíos de la física de partículas

Weirdly, the interview made it to the front page of the print version of newspaper:

cover

 

Villum Fonden Young Investigator Award

Standard

I was recently awarded a Villum Fonden Young Investigator Award (in the amount of ~10M DKK ~= 1.3M euro) to carry out the project “Pushing Neutrino Physics to the Cosmic Frontier”.

This starting grant will allow me to form my own research group at the Niels Bohr Institute, and to fund it for the coming five years. Come Fall 2020, I will become Assistant Professor at the NBI.

More information: https://www.nbi.ku.dk/english/namely_names/2020/three-young-scientists-from-nbi-receive-villum-young-investigator-grants/

New limits on secret neutrino interactions using IceCube neutrinos

Standard

Using high-energy astrophysical neutrinos, with TeV-PeV energies, we have placed limits on secret neutrino-neutrino interactions for mediator masses in the 1-100 MeV range.

While propagating to Earth, high-energy astrophysical neutrinos may interact resonantly with the cosmic neutrino background.  This would introduce a gap in the energy spectrum of the high-energy neutrinos.  We looked for this gap in 6 years of publicly available IceCube High Energy Starting Events (HESE).

Bounds on secret neutrino interactions from high-energy astrophysical neutrinos
Mauricio Bustamante, Charlotte Amalie Rosenstroem, Shashank Shalgar, Irene Tamborra

combined_nuSI_constraints

This complements our earlier work (1912.09115), which used supernova neutrinos to place limits on secret interactions, both from neutrino interactions inside the supernova core and from the propagation of neutrinos to Earth (these are the regions labeled “Shashank et al.” in the plot above).

New supernova limits on secret neutrino interactions

Standard

Our paper on new limits on new, secret, neutrino-neutrino interactions beyond the Standard Model from core-collapse supernovae is out:

Core-collapse supernovae stymie secret neutrino interactions (1912.09115)
Shashank Shalgar, Irene Tamborra, Mauricio Bustamante

combined_nuSI_constraints

We find limits on the mass and coupling of the new mediator through which the secret interactions occur.  For mediator masses between 10 MeV and 15 GeV, our limits are the strongest to date.  For mediator masses above 100 MeV, our limits are the first.