Our week-long online NBI Neutrino Summer School “Here, There & Everwhere” wrapped up today!
Find the slides for all talks and hands-on exercises on Indico.
The video recordings of all of the lectures and topical seminars are in our YouTube channel.
Thanks to our guest lecturers Joachim Kopp, Olga Mena, and Foeteini Oikonomou, to our topical seminar speakers from NBI Jason Koskinen, Tom Stuttard, Tyler Corbett, Oleg Ruchayskiy, Shashank Shalgar, and Rasmus Hansen, and to our eighteen student speakers from around the world.
Recently I gave an online introductory talk about neutrinos in the Thursday Morning Science seminar series of the University of L’Aquila. Here is the recording of that (sorry about the audio problems at the beginning!):
Students will be given topical introductions, along with an overview of the current state of the field and the open questions that confront it. The invited lecturers are internationally renowned experts in their fields. The school participants will gain a broad understanding of current theoretical problems in neutrino physics, state-of-the-art neutrino experiments, and applications of neutrinos in cosmology and astrophysics.
Registration deadline: March 31, 2021 (please register early)
Format: We are presently planning an in-person meeting, but we want to keep everyone safe, so we may revisit the school format if it becomes necessary or advisable due to travel or health restrictions
There is a vast potential in using the measurement of the flavor composition of high-energy (TeV-PeV) astrophysical neutrinos to test astrophysics and fundamental physics. But there is also plenty of uncertainty in the prediction of the allowed flavor composition at Earth, due to the uncertainties in the mixing parameters, and in the measurement of flavor composition in neutrino telescopes. In other words, flavor is a powerful tool, but it needs sharpening.
In our latest paper, we show that in the next 20 years, flavor will become the sharp tool it was always meant to be, thanks to new oscillation experiments and new neutrino telescopes:
The Future of High-Energy Astrophysical Neutrino Flavor Measurements Ningqiang Song, Shirley Weishi Li, Carlos A. Argüelles, Mauricio Bustamante, Aaron C. Vincent https://arxiv.org/abs/2012.12893
By 2040, we will be able to use flavor composition by itself to identify the production mechanism of high-energy astrophysical neutrinos:
Regions of allowed flavor composition at Earth: 2020 vs. 2040
The big POEMMA paper is finally out! It contains the science case, goals, and design of POEMMA, a twin-satellite experiment to detect the fluorescence and Cherenkov emission from extensive air showers triggered by ultra-high-energy cosmic rays and neutrinos in the atmosphere.
If the three active neutrinos mix with a sterile one, i.e., in 3+1 scenarios, they may modify the flavor composition of high-energy astrophysical neutrinos. We analytically derived boundaries in flavor space to avoid having to sample over unknown mixing and help boost searches for new physics (we provided them in nice downloadable data tables, too):
Flavors of Astrophysical Neutrinos with Active-Sterile Mixing Markus Ahlers, Mauricio Bustamante, Niels Gustav Nortvig Willesen https://arxiv.org/abs/2009.01253
The solid lines are the new 3+1 boundaries, computed for the three benchmark production scenarios (three different colors), compared to the boundaries that we computed for three-flavor mixing (dashed lines) in our earlier paper (1810.00893):
Where are the IceCube high-energy astrophysical neutrinos coming from? We don’t know yet! But if the neutrino sources harbor large magnetic fields, then maybe they will leave imprints (due to synchrotron radiation) on the neutrino flux. We looked for these imprints in public IceCube data: