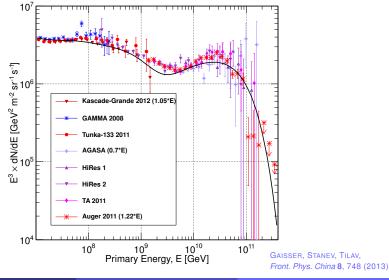
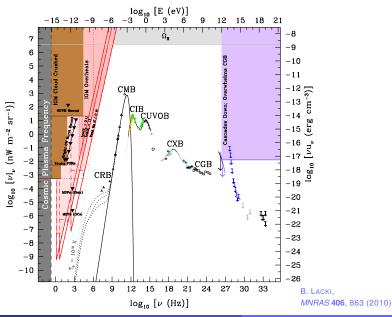
Gamma-ray bursts as UHECR (and neutrino) sources

Mauricio Bustamante

Center for Cosmology and AstroParticle Physics (CCAPP)
The Ohio State University

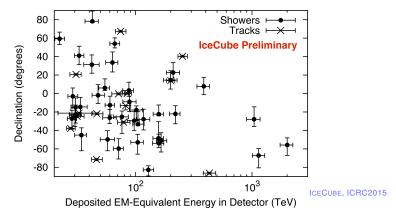
MACROS 2016


Penn State University — June 20, 2016



Ultra-high-energy cosmic rays

After 50+ years of UHECR measurements —



The electromagnetic sky

The high-energy neutrino sky

IceCube has reported 54 events with 30 TeV – 2 PeV in 4 years —

 $9.0^{+8.0}_{-2.2}$ atmospheric neutrinos 12.6 \pm 5.1 atmospheric muons

 6.5σ detection

GRBs – good candidates for UHE CR & ν sources

GRBs are among the best candidate sources for CRs and ν 's:

- \blacktriangleright radiated energy of $\sim 10^{52}-10^{53}$ erg
- ightharpoonup intense magnetic fields of \sim 10⁵ G
- ▶ magnetically-confined p's shock-accelerated to $\sim 10^{12}$ GeV
- ▶ plus: low backgrounds (for ν 's) due to small time window

Problem: experiments (IceCube, ANTARES) are starting to strongly constrain the simplest joint emission models

Solution: we need to build more realistic models!

GRBs – good candidates for UHE CR & ν sources

GRBs are among the best candidate sour

- ightharpoonup radiated energy of $\sim 10^{52}-10^{53}$ erg
- ightharpoonup intense magnetic fields of $\sim 10^5~{
 m G}$
- $\begin{cases} 10^{20} \text{ erg} & \text{H bomb} \\ 10^{26} \text{ erg} & \text{killer asteroid} \\ 10^{40} \text{ erg} & \text{Death Star} \\ 10^{33} \text{ erg s}^{-1} & \text{Sun} \\ 10^{41} \text{ erg s}^{-1} & \text{supernova} \\ 10^{45} \text{ erg s}^{-1} & \text{galaxy} \end{cases}$
- magnetically-confined p's shock-accelerated to ~ 10¹² GeV
- ▶ plus: low backgrounds (for ν 's) due to small time window

Problem: experiments (IceCube, ANTARES) are starting to strongly constrain the simplest joint emission models

Solution: we need to build more realistic models!

1 They are among the best candidates for detection of coincident high-energy e.m.—neutrino emission at PeV ν energies

- 1 They are among the best candidates for detection of coincident high-energy e.m.—neutrino emission at PeV ν energies
- 2 They can be the sources of UHECRs ($\gtrsim 10^9$ GeV)

```
    [P. BAERWALD, MB, W. WINTER, ApJ 768, 186 (2013)]
    [N. GLOBUS, D. ALLARD, R. MOCHKOVITCH, E. PARIZOT, MNRAS 451, 751 (2015)]
    [P. BAERWALD, MB, W. WINTER, Astropart. Phys. 62, 66 (2015)]
```

- 1 They are among the best candidates for detection of coincident high-energy e.m.—neutrino emission at PeV ν energies
- 2 They can be the sources of UHECRs ($\gtrsim 10^9$ GeV)

```
    [P. Baerwald, MB, W. Winter, ApJ 768, 186 (2013)]
    [N. Globus, D. Allard, R. Mochkovitch, E. Parizot, MNRAS 451, 751 (2015)]
    [P. Baerwald, MB, W. Winter, Astropart. Phys. 62, 66 (2015)]
```

3 Dark, "failed" GRBs might contribute an important part to the diffuse flux seen by IceCube

```
    [P. MÉSZÁROS, E. WAXMAN, PRL 87, 171102 (2001)]
    [K. MURASE, K. IOKA, PRL 111, 121102 (2013)]
    [I. TAMBORRA, S. ANDO, PRD 93, 053010 (2016)]
    [N. SENNO, K. MURASE, P. MÉSZÁROS, PRD 93, 083003 (2016)]
```

- 1 They are among the best candidates for detection of coincident high-energy e.m.—neutrino emission at PeV ν energies
- 2 They can be the sources of UHECRs ($\gtrsim 10^9$ GeV)

```
    [P. Baerwald, MB, W. Winter, ApJ 768, 186 (2013)]
    [N. Globus, D. Allard, R. Mochkovitch, E. Parizot, MNRAS 451, 751 (2015)]
    [P. Baerwald, MB, W. Winter, Astropart. Phys. 62, 66 (2015)]
```

Oark, "failed" GRBs might contribute an important part to the diffuse flux seen by IceCube

```
    [P. MÉSZÁROS, E. WAXMAN, PRL 87, 171102 (2001)]
    [K. MURASE, K. IOKA, PRL 111, 121102 (2013)]
    [I. TAMBORRA, S. ANDO, PRD 93, 053010 (2016)]
    [N. SENNO, K. MURASE, P. MÉSZÁROS, PRD 93, 083003 (2016)]
```

 Neutrinos from GRB afterglows might be important at EeV energies (observable by radio neutrino detectors)

```
    [K. Murase, PRD 76, 123001 (2007)] [S. Horiuchi, S. Ando, PRD 77, 063007 (2008)]
    [S. RAZZAQUE, L. YANG, PRD 91, 043003 (2015)]
```

Why is *now* a good time to do this?

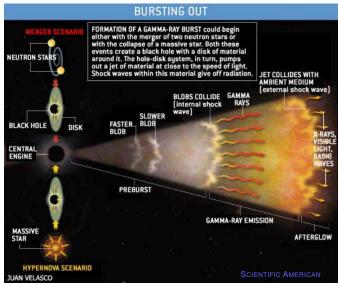
better, bigger detectors + loads of data + bright future

Neutrinos

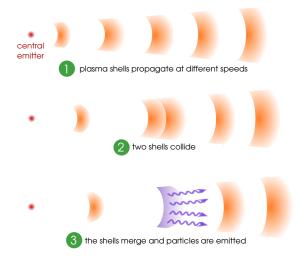
- ▶ IceCube: diffuse flux of HE astrophysical ν 's
- ▶ No point sources yet
- ► GRBs: low bg due to time and direction cuts
- ▶ IceCube-Gen2

GRBs

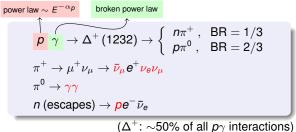
- ► Fermi: ~ 250 GRBs yr⁻¹ in 8 keV - 40 MeV
- $ightharpoonup \sim 12 \, \mathrm{GRBs} \, \mathrm{vr}^{-1}$ in 20 MeV - 300 GeV
- ▶ different wavelengths: INTEGRAL. Swift
- ▶ 1000's GRBs detected so far

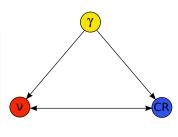

UHECRs

- ► Auger: 69 events > 57 EeV ▶ Telescope Array: 72 events
- surface + fluorescence
- ▶ future: LHAASO, JEM-EUSO


GRBs explained — the fireball model

Developed by Mészáros, Reese, Goodman, Pachinsky, et al. in the 1990s


Internal collisions


Relativistic expanding blobs of plasma collide with each other, merge, and emit UHE particles —

Producing the UHE ν 's, CRs, γ rays – a first look

Joint production of UHECRs, ν 's, and γ 's:

After propagation, with flavor mixing:

$$u_{m{e}}:
u_{\mu}:
u_{ au}:m{p}=\mathtt{1}:\mathtt{1}:\mathtt{1}:\mathtt{1}$$
 ("one u_{μ} per cosmic ray")

This neutron model of CR emission is now strongly disfavoured

ICECUBE, *Nature* **484**, 351 (2012) M. AHLERS *et al. Astropart. Phys.* **35**, 87 (2011)

What are the ingredients?

To calculate the ν flux from a GRB, we need:

- its gamma-ray luminosity L_{γ}^{iso} [erg s⁻¹] [measured]
- ightharpoonup its variability timescale t_v [s], from the light curve [measured]
- lacktriangledown the break energy of its photon spectrum $\epsilon_{\gamma, \mathrm{break}}$ [MeV] [measured]
- the bulk Lorentz factor of its jet Γ [estimated]
- the energy in electrons, magnetic field, protons [estimated]

Now let us cook up the neutrinos ▶

Normalizing neutrinos with observed gamma rays

For each GRB,

energy in neutrinos ∝ energy in gamma rays

$$\int_{0}^{\infty} dE_{\nu} E_{\nu} F_{\nu} \left(E_{\nu} \right) = \frac{1}{8} \underbrace{\left[1 - \left(1 - \langle X_{p \to \pi} \rangle \right)^{\Delta R / \lambda_{p\gamma}} \right]}_{f_{\pi}: \text{ fraction of } p \text{ energy dumped to } \pi} \frac{1}{f_{e}} \int_{1 \text{ keV}}^{10 \text{ MeV}} d\epsilon_{\gamma} \epsilon_{\gamma} F_{\gamma} \left(\epsilon_{\gamma} \right)$$

 $\triangle R$: size of the emitting region

 $\lambda_{p\gamma}$: mean free path for $p\gamma$ interactions

 $\langle x_{p\to\pi}\rangle$: avg. fraction of p energy transferred to a π in one interaction f_e^{-1} : ratio of energy in p's to energy in γ 's/e's ("baryonic loading")

Optical depth to p_{γ} :

$$\frac{\Delta R}{\lambda_{p\gamma}} = \left(\frac{L_{\gamma}^{\rm iso}}{10^{52}\,{\rm erg\,s^{-1}}}\right) \left(\frac{0.01}{t_{\nu}}\right) \left(\frac{10^{2.5}}{\Gamma}\right)^4 \left(\frac{{\rm MeV}}{\varepsilon_{\gamma,{\rm break}}}\right)$$

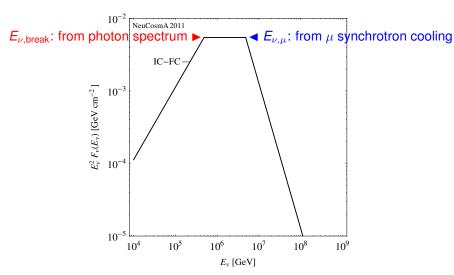
The original recipe: conventional fireball model

Observed gamma-ray fluence [GeV⁻¹ cm⁻²]

$$\mathcal{F}_{\gamma}\left(arepsilon_{\gamma}
ight) \propto \left\{egin{array}{ll} \left(arepsilon_{\gamma}/arepsilon_{\gamma, ext{break}}
ight)^{-1} &, \ arepsilon_{\gamma} < arepsilon_{\gamma, ext{break}} = 1 \ ext{MeV} \ \left(arepsilon_{\gamma}/arepsilon_{\gamma, ext{break}}
ight)^{-2.2} &, \ arepsilon_{\gamma} \geq arepsilon_{\gamma, ext{break}} \end{array}
ight.$$

+

Assumed proton spectrum in the source

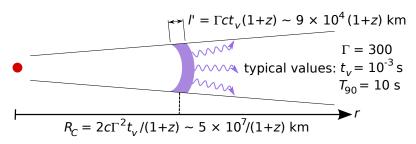

$$\begin{split} \textit{N}_{\rho}'\left(\textit{E}_{\rho}'\right) &\propto \textit{E}_{\rho}'^{-2}\textit{e}^{-\textit{E}_{\rho}'/\textit{E}_{\rho,\text{max}}'} \\ \textit{t}_{\text{acc}}'\left(\textit{E}_{\rho,\text{max}}'\right) &= \min\left[\textit{t}_{\text{dyn}}',\textit{t}_{\text{syn}}'\left(\textit{E}_{\rho,\text{max}}'\right),\textit{t}_{\rho\gamma}'\left(\textit{E}_{\rho,\text{max}}'\right)\right] \end{split}$$

=

Neutrino spectrum from $p\gamma$, via Δ resonance

$$F_{\nu}(\textit{E}_{\nu}) \propto \begin{cases} \left(\frac{\textit{E}_{\nu}}{\textit{E}_{\nu,\text{break}}}\right)^{-\alpha_{\nu}} &, \; \textit{E}_{\nu} < \textit{E}_{\nu,\text{break}} \\ \left(\frac{\textit{E}_{\nu}}{\textit{E}_{\nu,\text{break}}}\right)^{-\beta_{\nu}} &, \; \textit{E}_{\nu,\text{break}} \leq \textit{E}_{\nu} < \textit{E}_{\nu,\mu} \\ \left(\frac{\textit{E}_{\nu}}{\textit{E}_{\nu,\text{break}}}\right)^{-\beta_{\nu}} \left(\frac{\textit{E}_{\nu}}{\textit{E}_{\nu,\mu}}\right)^{-2} &, \; \textit{E}_{\nu} \geq \textit{E}_{\nu,\mu} \end{cases}$$

Neutrino spectrum – conventional fireball

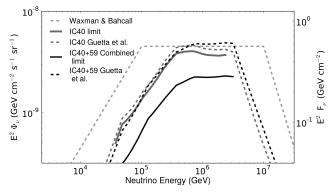


E. WAXMAN, J. N. BAHCALL, *PRL* **78**, 2292 (1997)

D. GUETTA et al., Astropart. Phys. 20, 429 (2004)

The one-zone approach

All internal collisions are identical and occur at the same radius —



- Average speed Γ inferred from afterglow observations
- ► "Variability timescale" t_v measured from the light curve
- Redshift z measured for the host galaxy
- ho $N_{\rm coll} pprox T_{90}/t_{\rm V} \sim 100{-}1000$ identical collisions

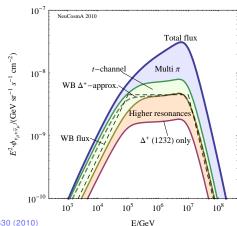
Neutron model of UHECR emission under tension?

In 2012, IceCube ruled this analytical version of the fireball model —

- assumed a fixed baryonic loading of 10
- extrapolated diffuse ν flux from 117–215 GRBs ("quasi-diffuse")
- analytical calculation in tension with upper bounds

ICECUBE, Nature 484, 351 (2012)

M. AHLERS et al. Astropart. Phys. 35, 87 (2011) D. GUETTA et al. Astropart. Phys. 20, 429 (2004)


Revised GRB neutrino emission

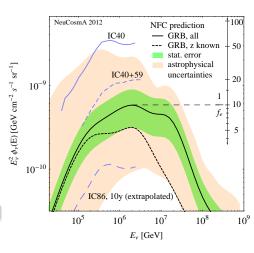
NeuCosmA: numerical GRB neutrino emission —

What does it include?

$$p\gamma \rightarrow \Delta^+$$
 (1232) $\rightarrow \pi^0, \pi^+$

- extra K, n, π^- , multi- π prod. modes
- synchrotron losses of secondaries
- adiabatic cooling
- full photon spectrum
- neutrino flavor transitions

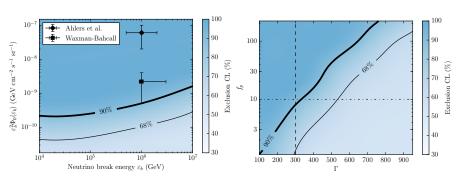
S. HÜMMER, M. RUGER, F. SPANIER, W. WINTER, *ApJ* **721**, 630 (2010) S. HÜMMER, P. BAERWALD, W. WINTER, *PRL* **108**, 231101 (2012) **Also:** K. MURASE, S. NAGATAKI, *PRD* **73**, 063002 (2006)


The new prediction of the quasi-diffuse GRB ν flux

Repeat the IceCube GRB neutrino analysis, with NeuCosmA —

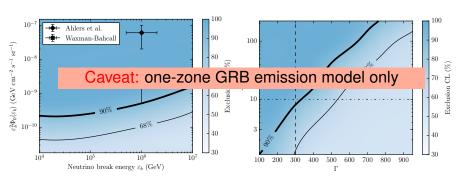
- Same GRB sample and parameters
- Calculate ν fluence for each burst and stacked fluence F_{ν} (E_{ν})
- Quasi-diffuse flux (N_{GRB} = 117):

$$\phi_{\nu}\left(\mathcal{E}_{\nu}\right) = F_{\nu}\left(\mathcal{E}_{\nu}\right) \frac{1}{4\pi} \frac{1}{N_{\text{GBB}}} \frac{667 \text{ bursts}}{\text{yr}}$$


Flux \sim 1 order of magnitude lower!

S. HÜMMER, P. BAERWALD, W. WINTER, PRL 108, 231101 (2012)

Improved IceCube limits (2016)


- 3 yr of showers (all flavors) + 4 yr of upgoing tracks with > 1 TeV
- Revised numerical GRB model (similar to NeuCosmA)
- ▶ 6 coincident events found (5 showers + 1 track) among 807 GRBs
- Low statistical significance
- $ightharpoonup \lesssim 1\%$ of the diffuse flux can be from prompt GRB emission

ICECUBE, 1601.06484

Improved IceCube limits (2016)

- → 3 yr of showers (all flavors) + 4 yr of upgoing tracks with > 1 TeV
- Revised numerical GRB model (similar to NeuCosmA)
- ▶ 6 coincident events found (5 showers + 1 track) among 807 GRBs
- Low statistical significance
- $ightharpoonup \lesssim 1\%$ of the diffuse flux can be from prompt GRB emission

ICECUBE, 1601.06484

Going beyond the neutron model

The neutron model hinges on:

- 1 p's magnetically confined, only n's escape
- p's interact at most once, n's do not (optically thin source)

However, under the "one ν_{μ} per CR" hypothesis, GRBs are disfavored as the sole sources of UHECRs (AHLERS *et al.*).

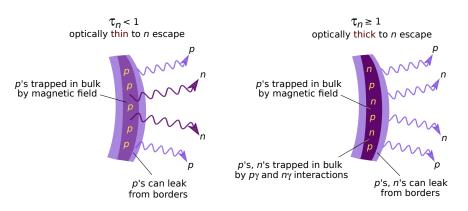
Going beyond the neutron model

The neutron model hinges on:

- 1 p's magnetically confined, only n's escape
- p's interact at most once, n's do not (optically thin source)

However, under the "one ν_{μ} per CR" hypothesis, GRBs are disfavored as the sole sources of UHECRs (AHLERS *et al.*).

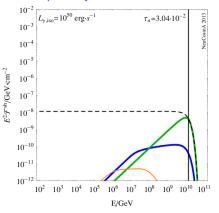
What if 1 and 2 are violated?

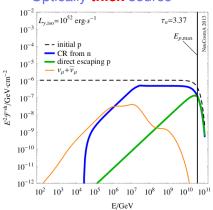

- ightharpoonup p's "leak out", not accompanied by (direct) ν production
- ightharpoonup multiple p interactions enhance the ν flux
- ▶ in optically thick sources, only n's at the borders escape

M. Ahlers, M. González-García, F. Halzen, Astropart. Phys. 35, 87 (2011)

Going beyond the neutron model

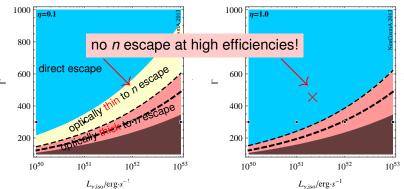
Now UHECRs escape as either


- neutrons, which decay into protons outside the source; or
- protons that leak out without interacting inside the source


A two-component model of UHECR emission

Sample neutrino fluences -

Optically thick source

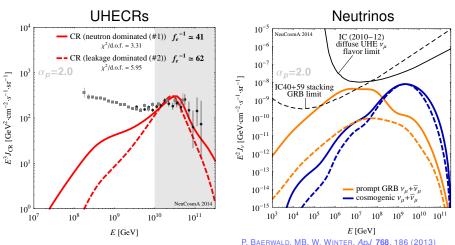


P. BAERWALD, MB, W. WINTER, ApJ 768, 186 (2013)

We need direct proton escape

Scan of the GRB emission parameter space —

acceleration
$$\longrightarrow \quad \eta = 0.1 \qquad t'_{\rm acc} \left(E'_{\rho} \right) = \frac{E'_{\rho}}{\eta {\rm ce} B'} \qquad \quad \eta = 1.0$$

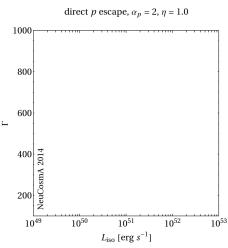


P. BAERWALD, MB. AND W. WINTER, ApJ 768, 186 (2013)

We need high efficiencies ⇒ direct proton escape *is* required

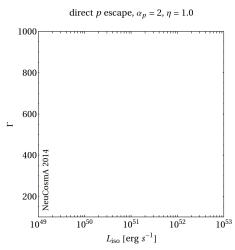
Diffuse UHECR and neutrino fluxes

Neutron model vs. two-component model: prompt and cosmogenic ν 's

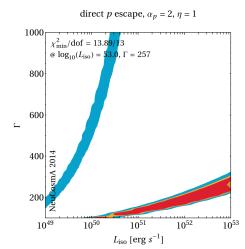


P. BAERWALD, MB, W. WINTER, ApJ 768, 186 (2013)
P. BAERWALD, MB, W. WINTER, Astropart. Phys. 62, 66 (2015)
See also: H. He et al., ApJ 752, 29 (2012)

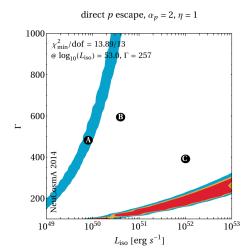
We can already limit the parameter space by using the UHECR observations and ν upper bounds:


We can already limit the parameter space by using the UHECR observations and ν upper bounds:

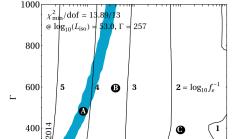
Generate the UHECR spectrum at every point in parameter space (e.g., in Γ vs. L_{iso})


We can already limit the parameter space by using the UHECR observations and ν upper bounds:

- Generate the UHECR spectrum at every point in parameter space (e.g., in Γ vs. L_{iso})
- 2 Fit each spectrum to UHECR data (TA, PAO, HiRes)


We can already limit the parameter space by using the UHECR observations and ν upper bounds:

- Generate the UHECR spectrum at every point in parameter space (e.g., in Γ vs. L_{iso})
- Fit each spectrum to UHECR data (TA, PAO, HiRes)
- 3 Find the best-fit point (diamond), and the 90% (red), 95% (yellow), and 99% (blue) C.L. regions


We can already limit the parameter space by using the UHECR observations and ν upper bounds:

- Generate the UHECR spectrum at every point in parameter space (e.g., in Γ vs. L_{iso})
- Fit each spectrum to UHECR data (TA, PAO, HiRes)
- 3 Find the best-fit point (diamond), and the 90% (red), 95% (yellow), and 99% (blue) C.L. regions

We can already limit the parameter space by using the UHECR observations and ν upper bounds:

- Generate the UHECR spectrum at every point in parameter space (e.g., in Γ vs. L_{iso})
- Fit each spectrum to UHECR data (TA, PAO, HiRes)
- 3 Find the best-fit point (diamond), and the 90% (red), 95% (yellow), and 99% (blue) C.L. regions
- 4 Find the baryonic loading (i.e., relative energy of p's to e's) at each point

 $10^{\overline{51}}$

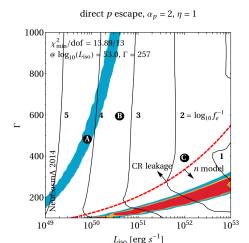
 $L_{\rm iso}$ [erg s^{-1}]

 10^{52}

direct p escape, $\alpha_n = 2$, $\eta = 1$

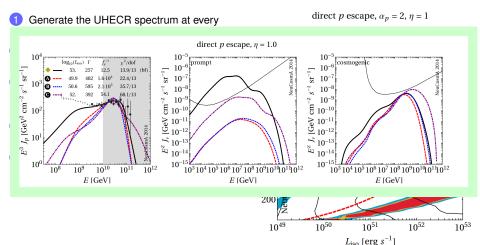
P. BAERWALD, MB, W. WINTER, Astropart. Phys. 62, 66 (2015)

 10^{50}

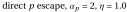

200

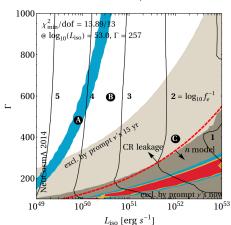
 10^{49}

 10^{53}


We can already limit the parameter space by using the UHECR observations and ν upper bounds:

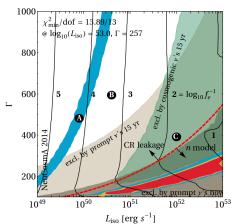
- Generate the UHECR spectrum at every point in parameter space (e.g., in Γ vs. L_{iso})
- Fit each spectrum to UHECR data (TA, PAO, HiRes)
- 3 Find the best-fit point (diamond), and the 90% (red), 95% (yellow), and 99% (blue) C.L. regions
- 4 Find the baryonic loading (i.e., relative energy of p's to e's) at each point
- Identify the region corresponding to pure n escape and to n escape + CR leakage


P. BAERWALD, MB, W. WINTER, Astropart. Phys. 62, 66 (2015)


We can already limit the parameter space by using the UHECR observations and ν upper bounds:

We can already limit the parameter space by using the UHECR observations and ν upper bounds:

- Generate the UHECR spectrum at every point in parameter space (e.g., in Γ vs. L_{iso})
- Fit each spectrum to UHECR data (TA, PAO, HiRes)
- 3 Find the best-fit point (diamond), and the 90% (red), 95% (yellow), and 99% (blue) C.L. regions
- 4 Find the baryonic loading (i.e., relative energy of p's to e's) at each point
- Identify the region corresponding to pure n escape and to n escape + CR leakage
- 6 Find the region where the number of prompt ν_{μ} 's is > 2.44, *i.e.*, the excluded region at 90% C.L.



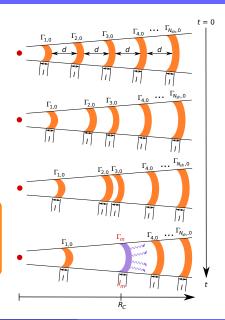
P. BAERWALD, MB, W. WINTER, Astropart. Phys. 62, 66 (2015)

We can already limit the parameter space by using the UHECR observations and ν upper bounds:

- Generate the UHECR spectrum at every point in parameter space (e.g., in Γ vs. L_{iso})
- Fit each spectrum to UHECR data (TA, PAO, HiRes)
- 3 Find the best-fit point (diamond), and the 90% (red), 95% (yellow), and 99% (blue) C.L. regions
- 4 Find the baryonic loading (i.e., relative energy of p's to e's) at each point
- 6 Identify the region corresponding to pure n escape and to n escape + CR leakage
- 6 Find the region where the number of prompt ν_{μ} 's is > 2.44, *i.e.*, the excluded region at 90% C.L.
- 7 After 15 yr of exposure and no detection, cosmogenic neutrinos also exclude

direct p escape, $\alpha_p = 2$, $\eta = 1.0$

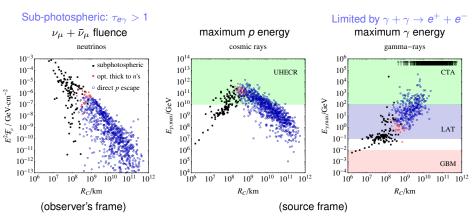
P. Baerwald, MB, W. Winter, Astropart. Phys. 62, 66 (2015)


Going further: an evolving burst

Consider an evolving fireball -

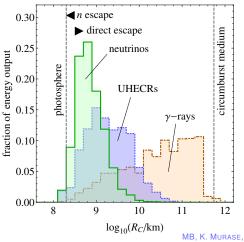
- the fireball expands with time
- ~ 1000 shells propagate with different speeds
- they have different masses
- they collide at different radii (collisions no longer identical)

What is different?


The particle (γ, p) densities fall as the fireball expands – particle production conditions change with time/radius

S. KOBAYASHI, T. PIRAN, R. SARI, *ApJ* **490**, 92 (1997) F. DAIGNE, R. MOCHKOVITCH, *MNRAS* **296**, 275 (1998)

Tracking each collision individually


Each collision occurs in a different emission regime –

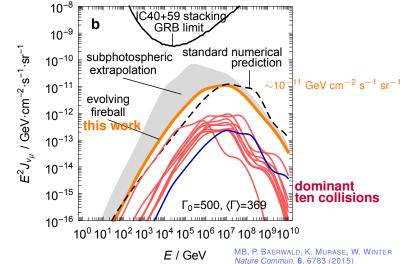
MB, P. BAERWALD, K. MURASE, W. WINTER, Nat. Commun. 6, 6783 (2015)

Different particles come from different jet regions

Emission of different species peaks at different collision radii —

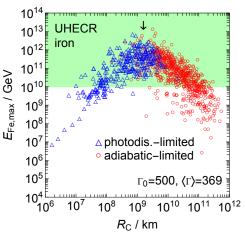
Why?

As the fireball expands, photon and proton densities fall


Why does it matter?

GRB parameters derived from gamma-ray observations might not be adequate to describe ν and UHECR emission

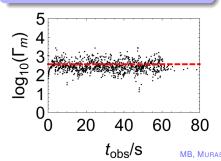
MB, K. Murase, W. Winter, 1606.02325 MB, P. Baerwald, K. Murase, W. Winter, *Nat. Commun.* **6**, 6783 (2015)


A robust minimal diffuse ν flux from GRBs

- ▶ Take the simulated burst as stereotypical
- Quasi-diffuse neutrino flux, assuming 667 identical GRBs per year:

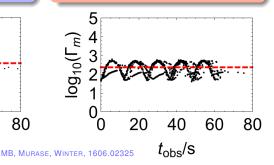
Accelerating iron

- ▶ Photodisintegration destroys nuclei close to the center (~ 10⁸ km) e.g., ANCHORDOQUI et al., Astropart. Phys. 29, 1 (2008)
- However, they can survive at large radii:



What makes a GRB bright in neutrinos?

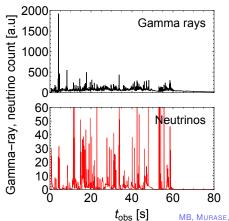
- Goal: to use the morphology of the GRB gamma-ray light curve to assess whether the burst is neutrino-bright
- The central engine determines the features of the light curve


Undisciplined GRB engine

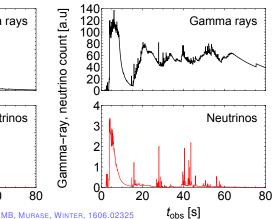
Engine emits shells with broad Γ distribution

Disciplined GRB engine

Engine emits shells with narrow Γ distribution

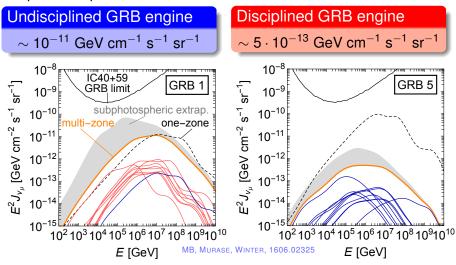

Light curves

Undisciplined GRB engine


- Fast variability dominates
- No broad pulses

Disciplined GRB engine

- Broad pulses dominate
- Fast variability on top



So which burst is neutrino-bright?

Compare the quasi-diffuse neutrino fluxes:

... An undisciplined engine makes a GRB neutrino-bright

Conclusions ... and the future

- ▶ GRBs *are* good UHECR and ν source candidates
- **But** the CR- ν - γ connection is trickier than originally thought
- ▶ Need next-gen neutrino telescopes (IceCube-Gen2, KM3NeT) . . .
- ... while Auger, Telescope Array, CTA, etc. gather extensive UHECR statistics

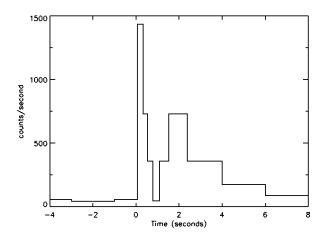
Backup slides

GRBs – what are they?

GRBs: the most luminous explosions in the Universe

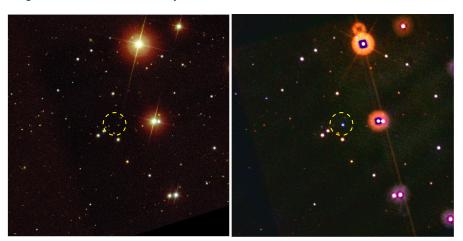
- brief flashes of gamma rays: from 0.1 s to few 100's s
- isotropically distributed in the sky
- ▶ they are far: most occur at \sim 1 Gpc from us ($z \approx 2$)
- they are rare: $\sim 0.3 \, \mathrm{Gpc^{-3} \ yr^{-1}}$
- two populations:
 - short-duration (< 2 s): neutron starneutron star or NS-black hole mergers
 - long-duration (> 2 s): associated to hypernovae
- powered by matter accretion onto a black hole

GRBs – an accidental discovery


After the 1963 Nuclear Test Ban Treaty, the U.S. launched six pairs of Vela satellites:

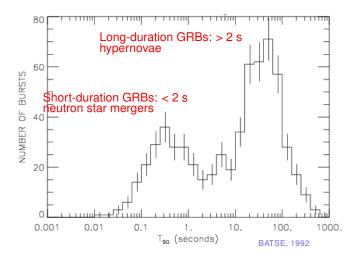
- They carried X-ray, gamma-ray, and neutron detectors
- Vela 5a-b had enough spatial resolution to pinpoint the direction of events
- Intense gamma-ray emission from a nuclear explosion lasts \(\lambda \) $10^{-6} \, \mathrm{s} \dots$
- ...however, longer-lasting emissions were detected

GRBs – the first one detected


First GRB detected: July 2, 1967, 14:19 UTC

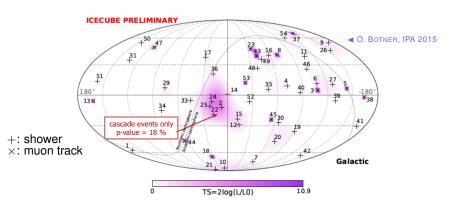
Detected by Vela 3, 4a, 4b (found on archival data)

What do they *look* like?


e.g., GRB060218 seen by Swift

SDSS, SWIFT COLLAB., SLOAN FOUNDATION, NSF, NASA

GRBs – two populations


Two populations of GRBs:

T₉₀: time during which 90% of gamma-ray energy is recorded

What about the sources of HE neutrinos?

Arrival directions compatible with an isotropic distribution –

No association with sources found yet

NeuCosmA: revised GRB particle emission - I

proton density at the source [GeV⁻¹ cm⁻³]

NeuCosmA
$$N_{\gamma}'(E_{\gamma}')$$
 photon density at the source

$$= Q_{\nu}'(E_{\nu}')$$
emitted neutrino spectrum [GeV⁻¹ cm⁻³ s⁻¹]

▶ Photons (same shape as observed at Earth):

$$\textit{N}_{\gamma}'\left(\textit{E}_{\gamma}'\right) = \left\{ \begin{array}{ll} \left(\textit{E}_{\gamma}'/\textit{E}_{\gamma,\text{break}}'\right)^{-1} & , \; \textit{E}_{\gamma,\text{min}}' = 0.2 \; \text{eV} \leq \textit{E}_{\gamma}' < \textit{E}_{\gamma,\text{break}}' = 1 \; \text{keV} \\ \left(\textit{E}_{\gamma}'/\textit{E}_{\gamma,\text{break}}'\right)^{-2.2} & , \; \textit{E}_{\gamma}' \geq \textit{E}_{\gamma,\text{break}}' \\ 0 & , \; \text{otherwise} \end{array} \right.$$

▶ Protons: $N_p'\left(E_p'\right) \propto E_p'^{-lpha_p} e^{-E_p'/E_{p, ext{max}}'} \quad (lpha_p \gtrsim 2)$

NeuCosmA: revised GRB particle emission – I

proton density at the source [GeV⁻¹ cm⁻³]

NeuCosmA
$$N_{\gamma}'(E_{\gamma}')$$
 photon density at the source

$$= Q_{\nu}'(E_{\nu}')$$
emitted neutrino spectrum [GeV⁻¹ cm⁻³ s⁻¹]

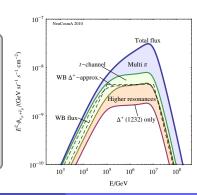
▶ Photons (same shape as observed at Earth):

$$\textit{N}_{\gamma}'\left(\textit{E}_{\gamma}'\right) = \left\{ \begin{array}{ll} \left(\textit{E}_{\gamma}'/\textit{E}_{\gamma,\text{break}}'\right)^{-1} & , \; \textit{E}_{\gamma,\text{min}}' = 0.2 \; \text{eV} \leq \textit{E}_{\gamma}' < \textit{E}_{\gamma,\text{break}}' = 1 \; \text{keV} \\ \left(\textit{E}_{\gamma}'/\textit{E}_{\gamma,\text{break}}'\right)^{-2.2} & , \; \textit{E}_{\gamma}' \geq \textit{E}_{\gamma,\text{break}}' \\ 0 & , \; \text{otherwise} \end{array} \right.$$

$$\textit{t}_{\text{acc}}^{\prime}\left(\textit{E}_{p,\text{max}}^{\prime}\right) = \min\left[\textit{t}_{\text{dyn}}^{\prime}, \textit{t}_{\text{syn}}^{\prime}\left(\textit{E}_{p,\text{max}}^{\prime}\right), \textit{t}_{p\gamma}^{\prime}\left(\textit{E}_{p,\text{max}}^{\prime}\right)\right]$$

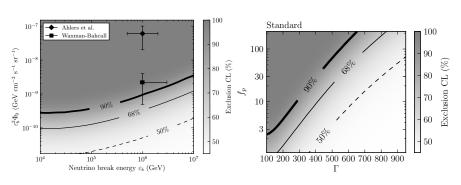
▶ Protons: $N_p'(E_p') \propto E_p'^{-\alpha_p} e^{-E_p'/E_{p,\text{max}}'} \quad (\alpha_p \gtrsim 2)$

NeuCosmA: revised GRB particle emission — II


Injected/ejected spectrum of secondaries $(\pi, K, n, \nu, \text{ etc.})$:

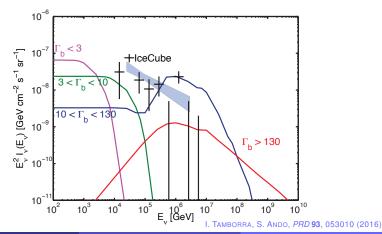
response function

R contains cross sections, multiplicities for different channels


What does NeuCosmA include?

- $ho \gamma
 ightarrow \Delta^+$ (1232) $ightarrow \pi^0, \pi^+, \dots$
- extra K, n, π^- , multi- π prod. modes
- synchrotron losses of secondaries
- adiabatic cooling
- full photon spectrum
- neutrino flavor transitions

Improved IceCube bounds (2014)


- ▶ Only upgoing ν_{μ} 's with > 1 TeV used
- Four years of data (IC-40, -59, -79, -86)
- Larger GRB catalogue (506 bursts)
- One coincident event found, with low statistical significance
- $ho \lesssim 1\%$ of the diffuse flux can be from prompt GRB emission

[ICECUBE, ApJ 805, L5 (2015)]

What about low-luminosity and choked GRBs?

- Low-luminosity and choked GRBs might be in the same family as high-luminosity long GRBs
- ▶ Due to lower jet speeds (Γ_b) , they do not break out
- ▶ They might explain the TeV region of the IceCube diffuse ν flux:

NeuCosmA: (revised) GRB particle emission – II

Normalize the particle densities at the source —

► Photons:

$$\underline{ \begin{array}{c} \text{photon energy density per collision} \\ \int E_{\gamma}' \ N_{\gamma}' \left(E_{\gamma}' \right) \ dE_{\gamma}' \end{array} } = \underbrace{ \begin{array}{c} E_{\gamma, \text{tot}}^{\text{iso},\prime} \sim 10^{53} \ \text{erg (from observed fluence)} \\ \hline \text{total gamma-ray energy of burst} \\ \hline \text{number of collisions} \cdot \underline{\text{volume of one collision}} \\ \hline N_{\text{coll}} & \underline{V_{\text{iso}}'} \\ \hline \end{array} }$$

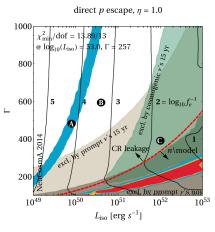
Protons: baryonic loading (energy in p's / energy in e's + γ 's), e.g., 10

proton energy density per collision
$$\int E'_0 N'_0(E'_0) dE'_0$$
 photon energy density per collision

A two-component model of CR emission

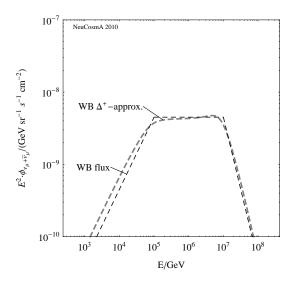
Optical depth:

$$\tau_n = \left. \frac{t_{p\gamma}^{-1}}{t_{\rm dyn}^{-1}} \right|_{E_{\rm p,max}} = \left\{ \begin{array}{l} \lesssim 1 \;, & {\rm optically} \; {\rm thin} \; {\rm source} \\ > 1 \;, & {\rm optically} \; {\rm thick} \; {\rm source} \end{array} \right.$$

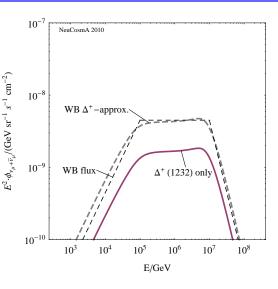

Particles can escape from within a shell of thickness λ'_{mfp} :

$$\begin{array}{l} \lambda_{p,\mathrm{mfp}}'\left(E'\right) = \min\left[\Delta r', R_L'\left(E'\right), ct_{p\gamma}'\left(E'\right)\right] \\ \lambda_{n,\mathrm{mfp}}'\left(E'\right) = \min\left[\Delta r', ct_{p\gamma}'\left(E'\right)\right] \end{array} \right\} f_{\mathrm{esc}} = \frac{\lambda_{\mathrm{mfp}}'}{\Delta r'}$$

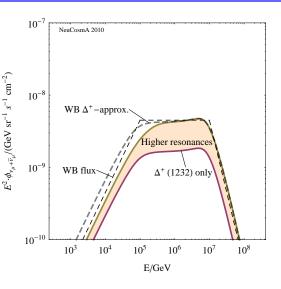
fraction of escaping particles


Star-formation-rate vs. GRB redshift evolution

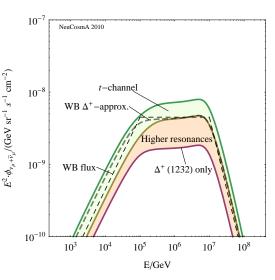
The exclusion from cosmogenic ν 's grows if the number of GRBs evolves more strongly with redshift:


direct p escape, n = 1.01000 NeuCosmA 2014 @ $\log_{10}(L_{iso}) = 52.9 \Gamma = 257$ 800 cosmogenic 600 400 CR leakage model 200 10^{50} 10^{49} 10^{51} 10^{52} 10^{53} $L_{\rm iso}$ [erg s^{-1}]

 $n_{\rm GRB}\left(z\right)\propto
ho_{\rm SFR}\left(z\right) \qquad \qquad n_{\rm GRB}\left(z\right)\propto
ho_{\rm SFR}\left(z\right)\times \left(1+z\right)^{1.2}$ (star formation rate)

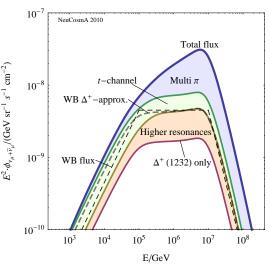

Contributions to $(\nu_{\mu} + \bar{\nu}_{\mu})$ flux from π^{\pm} decay divided in:

Δ(1232)-resonance


Contributions to $(\nu_{\mu} + \bar{\nu}_{\mu})$ flux from π^{\pm} decay divided in:

- Δ(1232)-resonance
- Higher resonances

Contributions to $(\nu_{\mu} + \bar{\nu}_{\mu})$ flux from π^{\pm} decay divided in:


- Δ(1232)-resonance
- ► Higher resonances
- t-channel (direct production)

Contributions to $(\nu_{\mu} + \bar{\nu}_{\mu})$ flux from π^{\pm} decay divided in:

- Δ(1232)-resonance
- Higher resonances
- t-channel (direct production)
- High energy processes (multiple π)

P. BAERWALD, S. HÜMMER, AND W. WINTER, *Phys. Rev.* **D83**, 067303 (2011)

Especially "Multi π " contribution leads to change of flux shape; neutrino flux higher by up to a factor of 3 compared to WB treatment

NeuCosmA – further particle decays

$$\pi^+ \rightarrow \mu^+ + \nu_{\mu}$$

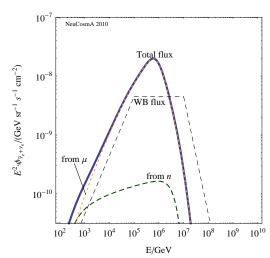
$$\mu^+ \rightarrow \mathbf{e}^+ + \nu_{\mathbf{e}} + \bar{\nu}_{\mu}$$

$$\pi^{-} \rightarrow \mu^{-} + \bar{\nu}_{\mu}$$
$$\mu^{-} \rightarrow \mathbf{e}^{-} + \bar{\nu}_{\mathbf{e}} + \nu_{\mu}$$

$$K^+ \rightarrow \mu^+ + \nu_\mu$$

$$n \rightarrow p + e^- + \bar{\nu}_e$$

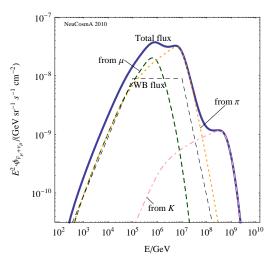
NeuCosmA – further particle decays

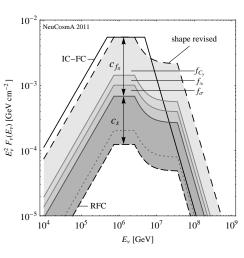

$$\begin{array}{ccc} \pi^+ & \rightarrow & \mu^+ + \nu_\mu \\ & \mu^+ \rightarrow \mathbf{e}^+ + \nu_{\mathbf{e}} + \bar{\nu}_\mu \end{array}$$

$$\begin{array}{ccc} \pi^{-} & \rightarrow & \mu^{-} + \bar{\nu}_{\mu} \\ & \mu^{-} \rightarrow \mathbf{e}^{-} + \overline{\nu}_{\mathbf{e}} + \nu_{\mu} \end{array}$$

$$K^+ \rightarrow \mu^+ + \nu_\mu$$

$$n \rightarrow p + e^- + \bar{\nu}_e$$


Resulting ν_e flux (at the observer)


NeuCosmA – further particle decays

$$\pi^{+}$$
 \rightarrow $\mu^{+} + \nu_{\mu}$
 $\mu^{+} \rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$
 π^{-} \rightarrow $\mu^{-} + \bar{\nu}_{\mu}$,
 $\mu^{-} \rightarrow e^{-} + \bar{\nu}_{e} + \nu_{\mu}$
 K^{+} \rightarrow $\mu^{+} + \nu_{\mu}$
 $\eta \rightarrow p + e^{-} + \bar{\nu}_{e}$

Resulting ν_{μ} flux (at the observer)

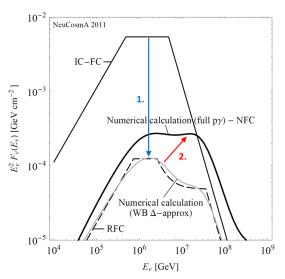
NeuCosmA – how the neutrino spectrum changes – I

S. HÜMMER, P. BAERWALD, W. WINTER, *Phys. Rev. Lett.* **108**, 231101 (2012)

Corrections to the analytical model:

► shape revised:

- shift of first break (correction of photohadronic threshold)
- b different cooling breaks for μ 's and π 's
- (1+z) correction on the variability scale of the GRB

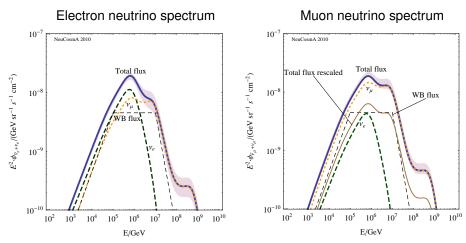

▶ Correction cf_{π} to π prod. efficiency:

- $ightharpoonup f_{C_{\gamma}}$: full spectral shape of photons
- $f_{\approx} = 0.69$: rounding error in analytical calculation
- $f_{\sigma} \simeq 2/3$: from neglecting the width of the Δ -resonance

► Correction *c_S*:

- energy losses of secondaries
- energy dependence of the mean free path of protons

NeuCosmA – how the neutrino spectrum changes – II


For example, GRB080603A:

- Correction to analytical model (IC-FC → RFC)
- Change due to full numerical calculation

IC-FC: IceCube-Fireball Calculation
RFC: Revised Fireball Calculation
Numerical Fireball Calculation

S. HÜMMER, P. BAERWALD, W. WINTER, *PRL* **108**, 231101 (2012)

NeuCosmA – neutrino spectra including flavor mixing

P. BAERWALD, S. HÜMMER, W. WINTER, *Phys. Rev.* **D83**, 067303 (2011)

Characteristic double peak structure from μ and π decay in both flavors, additional peak from K^+ decay at 10⁸ to 10⁹ GeV

The need for km-scale neutrino telescopes

Expected ν flux from cosmological accelerators (Waxman & Bahcall 1997 & 1998):

$$E^2\Phi_{
u}\sim 10^{-8}rac{f_{\pi}}{0.2}\left(rac{\dot{arepsilon}_{\mathrm{CR}}^{\left[10^{10},10^{12}
ight]}}{10^{44}\ \mathrm{erg}\ \mathrm{Mpc}^{-3}\ \mathrm{yr}^{-1}}
ight)\ \mathrm{GeV}\ \mathrm{cm}^{-2}\ \mathrm{s}^{-1}\ \mathrm{sr}^{-1}$$

Integrated flux above 1 PeV:

$$\Phi_{\nu} \, (> 1 \; \text{PeV}) \sim \int_{1 \; \text{PeV}}^{\infty} \frac{10^{-8}}{E^2} \; dE \sim 10^{-20} \; \text{cm}^{-2} \; \text{s}^{-1} \; \text{sr}^{-1}$$

Number of events from half of the sky (2π) :

$$\textit{N}_{\nu} \simeq 2\pi \cdot \Phi_{\nu} \, (> \text{1 PeV}) \cdot \text{1 yr} \cdot \textit{A}_{\text{eff}} pprox \left(2.4 imes 10^{-10} \text{ cm}^{-2}
ight) \textit{A}_{\text{eff}} \; ,$$

where $A_{\rm eff}$ is the effective area of the detector

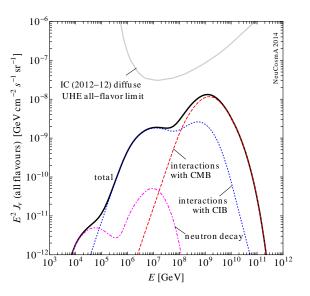
To detect $N_{\nu} > 1$ events per year, we need an area of

$$A_{\rm eff} \gtrsim 0.4 \, {\rm km}^2$$

Therefore, we need km-scale detectors, like IceCube

Cosmogenic neutrinos

We have seen that protons interact with the cosmological photon fields (CMB, etc.), *e.g.*,


$$p + \gamma \rightarrow \Delta^+ \rightarrow \pi^+ + n$$
,

and neutrinos are created in the decays of the secondaries:

$$\pi^+
ightarrow \mu^+ + \nu_{\mu}$$
 $\mu^+
ightarrow \overline{
u}_{\mu} + \nu_{e} + e^+$
 $n
ightarrow p + e^- + \overline{
u}_{e}$

These are called cosmogenic neutrinos

Cosmogenic neutrinos

P. BAERWALD, MB, W. WINTER, Astropart. Phys. 62, 66 (2015)

Interaction with the photon backgrounds – I

Energy loss rate (GeV s⁻¹):

$$b(E) \equiv \frac{dE}{dt}$$

▶ For pair production $p\gamma \longrightarrow pe^+e^-$:

$$b_{e^{+}e^{-}}(E,z) = -\alpha r_{0}^{2} (m_{e}c^{2})^{2} c \int_{2}^{\infty} d\xi n_{\gamma} \left(\frac{\xi m_{e}c^{2}}{2\gamma}, z\right) \frac{\phi(\xi)}{\xi^{2}}$$

- $ightharpoonup n_{\gamma}$: isotropic photon background (GeV⁻¹ cm⁻³)
- ξ : photon energy in units of $m_e c^2$
- proton energy: $E = \gamma m_p c^2 \ (\gamma \gg 1)$
- $\phi(\xi)$: (tabulated) integral in energy of outgoing e^-

G. BLUMENTHAL, *Phys. Rev.* **D 1**, 1596 (1970) H. BETHE, W. HEITLER, *Proc. Roy. Soc.* **A146**, 83 (1934)

Interaction with the photon backgrounds – II

Photohadronic interactions – $p\gamma$ interaction rate (s⁻¹ per particle):

$$\Gamma_{p\gamma\to p'b}(E,z) = \frac{1}{2} \frac{m_p^2}{E^2} \int_{\frac{\epsilon_{\text{th}} m_p}{2E}}^{\infty} d\epsilon \frac{n_{\gamma}\left(\epsilon,z\right)}{\epsilon^2} \int_{\epsilon_{\text{th}}}^{2E\epsilon/m_p} d\epsilon_r \epsilon_r \sigma_{p\gamma\to p'b}^{\text{tot}}\left(\epsilon_r\right)$$

1 For given values of E and z, NeuCosmA calculates the cooling rate $t_{p\gamma}^{-1} \equiv -(1/E) b_{p\gamma} (s^{-1})$ as

$$t_{p\gamma}^{-1}\left(E,z
ight) = \sum_{i}^{ ext{all channels}} \Gamma_{p
ightarrow p}^{i}\left(E,z
ight)K^{i} \,,$$

with K^iE the loss of energy per interaction

- 2 From this, we calculate back $b_{p\gamma}$ (GeV s⁻¹) ...
- 3 ... and the corresponding energy-loss term in the transport equation, $\partial_E (b_{p\gamma} Y_p)$.

S. HÜMMER, M. RÜGER, F. SPANIER, W. WINTER, Astrophys. J. 721, 630 (2010) [1002.1310]

Interaction lengths

Note that $L_{\text{CIB}} \gg L_{\text{CMB}}$:

Matches, e.g., H. TAKAMI, K. MURASE, S. NAGATAKI, K. SATO, Astropart. Phys. 31, 201 (2009) [0704.0979]

Secondary injection of neutrons, neutrinos ($GeV^{-1} cm^{-3} s^{-1}$)

$$Q'\left(E'\right) = \int_{E'}^{\infty} \frac{dE'_{p}}{E'_{p}} N'_{p}\left(E'_{p}\right) \int_{0}^{\infty} cd\varepsilon' N'_{\gamma}\left(\varepsilon'\right) R\left(E', E'_{p}, \varepsilon'\right)$$

Normalisation to the observed GRB photon flux F_{γ}

$$\int \varepsilon' N_{\gamma}' \left(\varepsilon' \right) d\varepsilon' = \frac{E_{\mathrm{iso}}'^{\mathrm{sh}}}{V_{\mathrm{iso}}'} \propto F_{\gamma} \; , \; \; \int E_{\rho}' N_{\rho}' \left(E_{\rho}' \right) dE_{\rho}' = \frac{1}{f_{e}} \frac{E_{\mathrm{iso}}'^{\mathrm{sh}}}{V_{\mathrm{iso}}'} \propto \frac{F_{\gamma}}{f_{e}}$$

Fluence per shell, at Earth (GeV⁻¹ cm⁻²)

$$\mathcal{F}^{\rm sh} = t_{\rm v} V_{\rm iso}^{\prime} \frac{\left(1+z\right)^2}{4\pi d_{\rm I}^2} Q^{\prime}$$

Secondary injection of neutrons, neutrinos (GeV⁻¹ cm⁻³ s⁻¹)

$$Q'\left(E'\right) = \int_{E'}^{\infty} \frac{dE'_{\rho}}{E'_{\rho}} N'_{\rho} \left(E'_{\rho}\right) \int_{0}^{\infty} cd\varepsilon' N'_{\gamma} \left(\varepsilon'\right) R\left(E', E'_{\rho}, \varepsilon'\right)$$

► Photon density, shock rest frame (GeV⁻¹ cm⁻³):

$$\begin{split} \textbf{\textit{N}}_{\gamma}'\left(\varepsilon'\right) &\propto \left\{ \begin{array}{l} \left(\varepsilon'\right)^{-\alpha_{\gamma}}, \quad \varepsilon_{\gamma,\mathsf{min}}' = 0.2 \; \mathsf{eV} \leq \varepsilon' \leq \varepsilon_{\gamma,\mathsf{break}}' \\ \left(\varepsilon'\right)^{-\beta_{\gamma}}, \quad \varepsilon_{\gamma,\mathsf{break}}' \leq \varepsilon' \leq \varepsilon_{\gamma,\mathsf{max}}' = 300 \times \varepsilon_{\gamma,\mathsf{min}}' \\ \varepsilon_{\gamma,\mathsf{break}}' &= \mathcal{O}\left(\mathsf{keV}\right), \alpha_{\gamma} \approx 1, \beta_{\gamma} \approx 2 \end{array} \right. \end{split}$$

▶ Proton density:

$$\textit{N}_{\textit{p}}^{\prime}\left(\textit{E}_{\textit{p}}^{\prime}\right) \propto \left(\textit{E}_{\textit{p}}^{\prime}\right)^{-\alpha_{\textit{p}}} \times \exp\left[-\left(\textit{E}_{\textit{p}}^{\prime}/\textit{E}_{\textit{p},\text{max}}^{\prime}\right)^{2}\right] \ \, (\alpha_{\textit{p}} \approx 2)$$

Maximum proton energy limited by energy losses:

$$\textit{t}_{\text{acc}}^{\prime}\left(\textit{E}_{\textit{p},\text{max}}^{\prime}\right) = \min\left[\textit{t}_{\text{dyn}}^{\prime},\textit{t}_{\text{syn}}^{\prime}\left(\textit{E}_{\textit{p},\text{max}}^{\prime}\right),\textit{t}_{\textit{p}\gamma}^{\prime}\left(\textit{E}_{\textit{p},\text{max}}^{\prime}\right)\right]$$

Secondary injection of neutrons, neutrinos (GeV⁻¹ cm⁻³ s⁻¹)

$$Q'\left(E'\right) = \int_{E'}^{\infty} \frac{dE'_{p}}{E'_{p}} N'_{p}\left(E'_{p}\right) \int_{0}^{\infty} cd\varepsilon' N'_{\gamma}\left(\varepsilon'\right) R\left(E', E'_{p}, \varepsilon'\right)$$

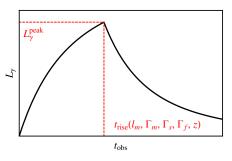
Normalisation to the observed GRB photon flux F_{γ}

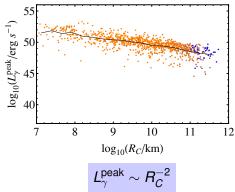
$$\int \varepsilon' N_{\gamma}' \left(\varepsilon' \right) d\varepsilon' = \frac{E_{\mathrm{iso}}'^{\mathrm{sh}}}{V_{\mathrm{iso}}'} \propto F_{\gamma} \; , \; \; \int E_{\rho}' N_{\rho}' \left(E_{\rho}' \right) dE_{\rho}' = \frac{1}{f_{\mathrm{e}}} \frac{E_{\mathrm{iso}}'^{\mathrm{sh}}}{V_{\mathrm{iso}}'} \propto \frac{F_{\gamma}}{f_{\mathrm{e}}}$$

Secondary injection of neutrons, neutrinos (GeV⁻¹ cm⁻³ s⁻¹)

$$Q'\left(E'\right) = \int_{E'}^{\infty} \frac{dE'_{\rho}}{E'_{\rho}} N'_{\rho}\left(E'_{\rho}\right) \int_{0}^{\infty} cd\varepsilon' N'_{\gamma}\left(\varepsilon'\right) R\left(E', E'_{\rho}, \varepsilon'\right)$$

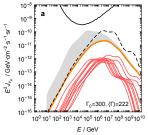
Normalisation to the observed GRB photon flux F_{γ}

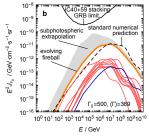

$$\int \varepsilon' \textit{N}_{\gamma}'\left(\varepsilon'\right) \textit{d}\varepsilon' = \frac{E_{\rm iso}'^{\rm sh}}{V_{\rm iso}'} \propto \textit{F}_{\gamma} \;, \; \; \int \textit{E}_{\rho}' \textit{N}_{\rho}'\left(\textit{E}_{\rho}'\right) \textit{d}E_{\rho}' = \frac{1}{\textit{f}_{\rm e}} \frac{E_{\rm iso}'^{\rm sh}}{V_{\rm iso}'} \propto \frac{\textit{F}_{\gamma}}{\textit{f}_{\rm e}}$$

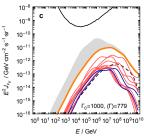

Fluence per shell, at Earth (GeV⁻¹ cm⁻²)

$$\mathcal{F}^{\rm sh} = t_V V_{\rm iso}' \frac{(1+z)^2}{4\pi d_I^2} Q'$$

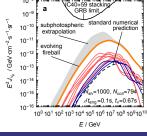
Gamma-ray and neutrino pulses

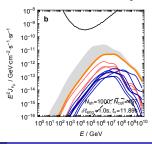

A fast-rise-exponential-decay (FRED) gamma-ray pulse is emitted in every collision:

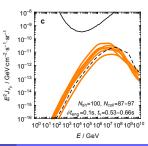




The prediction is robust


Simulations show only weak dependence of the flux on the boost Γ . . .





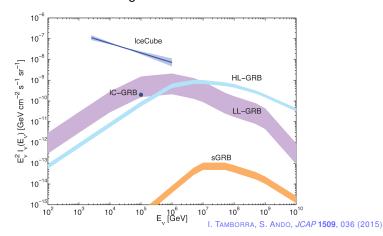
... and on the GRB engine variability time $\delta t_{\rm eng}$

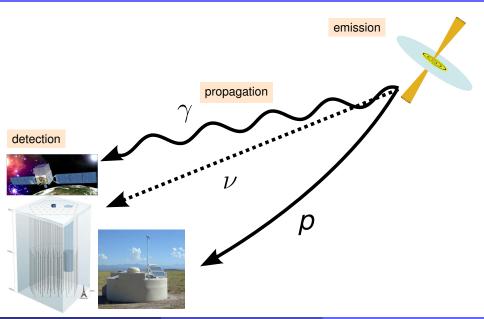
Propagating the UHECRs to Earth

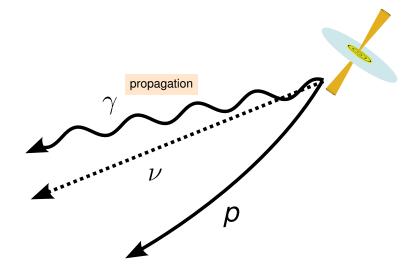
We use a Boltzmann equation to transport protons to Earth:

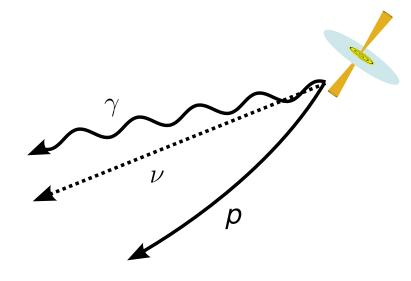
► Comoving number density of protons (GeV⁻¹ cm⁻³):

$$Y_{p}(E,z) = n_{p}(E,z)/(1+z)^{3}$$
,

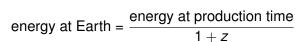

with n_p the real number density

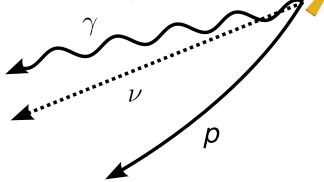

Transport equation (comoving source frame):

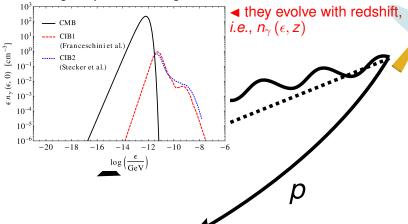

$$\dot{Y}_p = \partial_E (HEY_p) + \partial_E (b_{e^+e^-}Y_p) + \partial_E (b_{p\gamma}Y_p) + \mathcal{L}_{CR}$$
 adiabatic losses pair production losses CR injection from sources $Q_{CR}(E) \propto E^{-\alpha_p} e^{-E/E_{p,max}}$

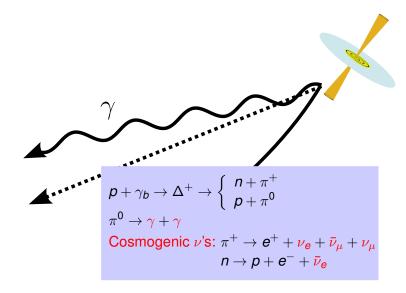

Contribution of GRBs to the diffuse ν flux

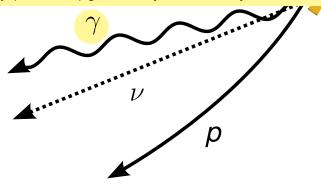
- ► Three populations: high-luminosity long GRBs (HL-GRB), low-luminosity long GRBs (LL-GRB), short GRBs (sGRB)
- Sub-PeV: GRBs contribute a few % to the IceCube diffuse flux
- PeV: contribution could be higher





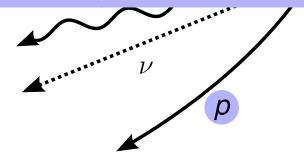


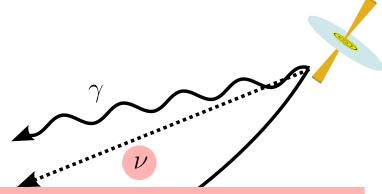

Because of the cosmological expansion:


Cosmological photon backgrounds:

- γ 's and e^{\pm} 's dump energy into e.m. cascades through
 - ▶ pair production, $\gamma + \gamma_b \rightarrow e^+ + e^-$
 - ▶ inverse Compton scattering, $e^{\pm} + \gamma_b \rightarrow e^{\pm} + \gamma$

Lower-energy (GeV-TeV) gamma-rays detected by Fermi-LAT




p's are deflected by extragalactic magnetic fields

⇒ except for the most energetic ones, they are Pierre Auger found weak correlation not expected to point back to the sources with known AGN positions

They lose energy through:

- lacktriangle pair production, $p+\gamma_b o p+e^++e^-$ depend on the redshift evolution
- of the cosmological γ backgrounds ightharpoonup photohadronic interactions, p_{γ_b}

Initial UHE ν flavor fluxes: ν_{e} : ν_{μ} : ν_{τ} = 1 : 2 : 0

Probability of $\nu_{\alpha} \rightarrow \nu_{\beta}$ transition: $P_{\alpha\beta}(E_0, z)$

Flavor oscillations redistribute the fluxes

MB, Beacom, Winter, *PRL* **115**, 161302 (2015)


– at Earth: ν_e : ν_μ : $\nu_\tau \approx$ 1 : 1 : 1 (might be changed by exotic physics!)

Initial distribution of shell speeds

Distribution of initial shell speeds (Lorentz factors):

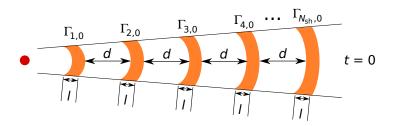
$$\ln\left(\frac{\Gamma_{k,0}-1}{\Gamma_0-1}\right)=A_{\Gamma}\cdot x$$

x follows a Gaussian distribution, $P(x) dx = dx e^{-x^2/2} / \sqrt{2\pi}$

$A_{\Gamma} < 1$

Speeds too similar, collisions only at large radii

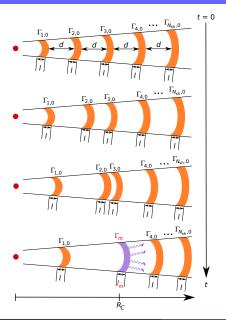
$A_{\Gamma}\gg 1$


Spread too large, too many collisions at low radii

$A_{\Gamma} \approx 1$

Just right, burst has high efficiency of conversion of kinetic to radiated energy

Initialising the burst simulation


Initial number of plasma shells in the jet: \gtrsim 1000

Initial values of shell parameters:

- ▶ Width of shells and separation between them: $I = d = c \cdot \delta t_{\mathsf{eng}}$
- ▶ Equal kinetic energy for all shells ($\sim 10^{52}$ erg)
- ▶ Shell speeds $\Gamma_{k,0}$ follow a distribution (log-normal or other)

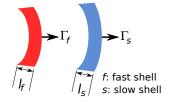
Propagating and colliding the shells

During propagation:

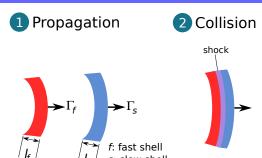
- speeds, masses, widths do not change (only in collisions)
- the new, merged shells continue propagating and can collide again

Evolution stops when either:

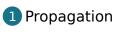
- a single shell is left; or
- ▶ all remaining shells have reached the circumburst medium ($\gtrsim 6 \times 10^{11}$ km)


final number of collisions

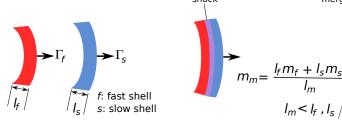
number of initial shells ($\gtrsim 1000$)


S. KOBAYASHI, T. PIRAN, R. SARI, *ApJ* **490**, 92 (1997) F. DAIGNE, R. MOCHKOVITCH, *MNRAS* **296**, 275 (1998)

Anatomy of an internal collision


1 Propagation

Anatomy of an internal collision



Anatomy of an internal collision

Part of the initial kinetic energy radiated as γ 's, ν 's, ρ 's, and n's:

$$\begin{split} E_{\text{coll}}^{\text{iso}} &= \left(E_{\text{kin},f}^{\text{iso}} - E_{\text{kin},m}^{\text{iso}}\right) + \left(E_{\text{kin},m}^{\text{iso}} - E_{\text{kin},s}^{\text{iso}}\right) \\ \frac{1/12}{\epsilon_{\theta} E_{\text{coll}}^{\text{iso}}} & \epsilon_{\theta} E_{\text{coll}}^{\text{iso}} \end{split}$$

energy in photons

energy in magnetic fields

energy in baryons

How is the new prediction different?

- The top-contributing collisions are at the photosphere
- Pion production efficiency there is independent of Γ:

$$\mathit{f}_{p\gamma}^{\text{ph}} \sim 5 \cdot \frac{arepsilon}{0.25} \cdot \frac{\epsilon_{\textit{e}}}{0.1} \cdot \frac{1 \; \text{keV}}{\epsilon'_{\gamma, \text{break}}}$$

 ε : energy dissipation efficiency ϵ_e : fraction of dissipated energy as e.m. output (photons)

ightharpoonup \Rightarrow Time-integrated neutrino fluence dominated is independent of Γ :

$$\mathcal{F}_{
u} \propto rac{ extstyle N_{ extstyle coll}(f_{p\gamma} \gtrsim 1)}{ extstyle N_{ extstyle coll}^{ extstyle tot}} imes \min \left[1, f_{p\gamma}^{ extstyle ph}
ight] imes rac{\epsilon_{p}}{\epsilon_{e}} imes extstyle E_{\gamma- ext{tot}}^{ ext{iso}}$$

- \blacktriangleright Compare to standard predictions, which have a $\langle \Gamma \rangle^{-4}$ dependence
- ▶ Raising ϵ_p automatically decreases ϵ_e , so the photosphere grows, but still \sim 10 photospheric collisions dominate

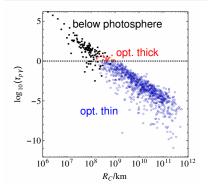
How is the new prediction different?

- The top-contributing collisions are at the photosphere
- Pion production efficiency there is independent of Γ:

$$f_{p\gamma}^{\text{ph}} \sim 5 \cdot \frac{arepsilon}{0.25} \cdot \frac{\epsilon_{ extit{e}}}{0.1} \cdot \frac{1 \text{ keV}}{\epsilon_{\gamma, ext{break}}'}$$

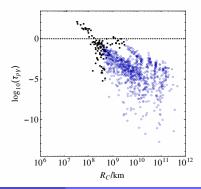
 ε : energy dissipation efficiency ϵ_e : fraction of dissipated energy as e.m. output (photons)

ightharpoonup \Rightarrow Time-integrated neutrino fluence dominated is independent of Γ :

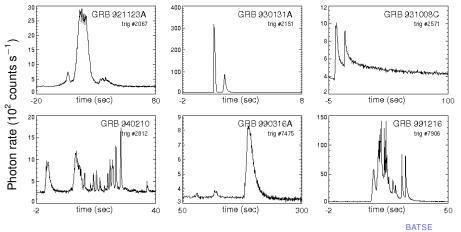

$$\mathcal{F}_{
u} \propto \frac{N_{
m coll} (f_{p\gamma} \gtrsim 1)}{N_{
m coll}^{
m tot}} imes \min \left[1, f_{p\gamma}^{
m ph}
ight] imes \frac{10}{\epsilon_{e}} imes \frac{10^{53} \
m erg}{E_{\gamma-
m tot}^{
m iso}}$$

- ▶ Compare to standard predictions, which have a $\langle \Gamma \rangle^{-4}$ dependence
- ▶ Raising ϵ_p automatically decreases ϵ_e , so the photosphere grows, but still \sim 10 photospheric collisions dominate

Why?


Undisciplined GRB engine

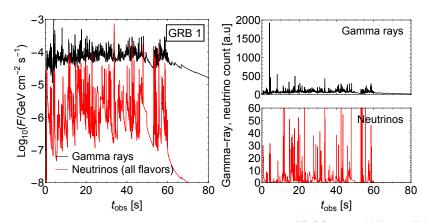
- Shells have very different speeds
- Collide quickly, close to engine
- \blacktriangleright High p and γ densities
- \sim 10 optically-thick bursts near the photosphere


Disciplined GRB engine

- Shells have similar speeds
- Collide far from engine
- **Low** p and γ densities
- All (superphotospheric) collisions are optically thin

GRBs – a zoo of light curves

GRB light curves come in different shapes:

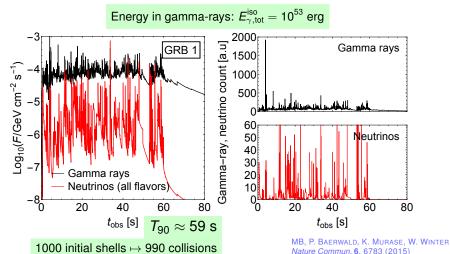


variability timescale (width of pulses) $\equiv t_{v} \approx 1 \text{ ms}$

Synthetic light curves

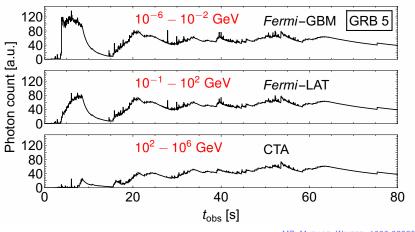
An emission pulse is assigned to each collision

- their superposition yields a synthetic light curve:



MB, P. BAERWALD, K. MURASE, W. WINTER Nature Commun. 6, 6783 (2015)

Synthetic light curves


An emission pulse is assigned to each collision

- their superposition yields a synthetic light curve:

Time delays in gamma-ray light curves

Neutrino-weak bursts show time delays in different energy bands —

