Honing in on the flavor composition of high-energy astrophysical neutrinos: the view from theory

Mauricio Bustamante

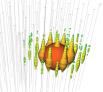
In collaboration with John Beacom and Walter Winter

Center for Cosmology and Astroparticle Physics (CCAPP)
The Ohio State University

CCAPP Summer Seminar Series
June 02, 2015

High-energy astrophysical neutrinos: they exist!

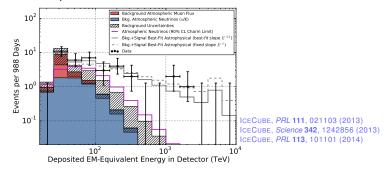
The era of neutrino astronomy has begun!


– IceCube (2010-2013) detected 37 events with 30 TeV – 2 PeV

"Bert", 1.04 PeV

"Ernie", 1.14 PeV

"Big Bird", 2 PeV

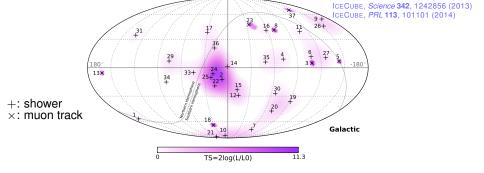

... and 34 more events < 385 TeV

High-energy astrophysical neutrinos: they exist!

The era of neutrino astronomy has begun!

– IceCube (2010-2013) detected 37 events with 30 TeV – 2 PeV

Diffuse flux compatible with extragalactic origin (Waxman & Bahcall 1997):


$$E^2\Phi_{\nu} = (0.95 \pm 0.3) \times 10^{-8} \; \text{GeV cm}^{-2} \; \text{s}^{-1} \; \text{sr}^{-1} \; \text{(per flavour)}$$

High-energy astrophysical neutrinos: they exist!

The era of neutrino astronomy has begun!

– IceCube (2010-2013) detected 37 events with 30 TeV – 2 PeV

Arrival directions compatible with an isotropic distribution –

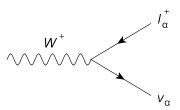
no association with sources found yet

ICECUBE, PRL 111, 021103 (2013)

Flavor composition of neutrinos: an open question

What is the proportion of ν_e , ν_u , ν_τ in the diffuse flux?

Knowing this can reveal two important pieces of information:


- the physical conditions at the neutrino sources; and
- whether there is new physics, and of what kind

A quick review of neutrino mixing (I)

▶ Two bases:

$$\underbrace{\{\nu_{\textit{e}},\nu_{\mu},\nu_{\tau}\}}_{\text{flavor eigenstates}} \neq \underbrace{\{\nu_{1},\nu_{2},\nu_{3}\}}_{\text{mass eigenstates}}$$

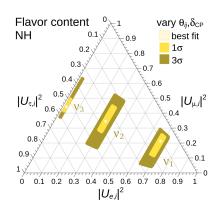
► Flavor eigenstate ν_{α} ($\alpha = e, \mu, \tau$): accompanies the charged anti-lepton I_{α}^{+} that is created in a charged-current weak interaction:

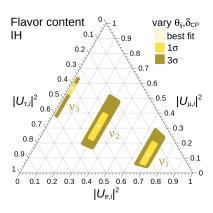
- ▶ Mass eigenstate ν_i (i = 1, 2, 3): has a definite mass
- ▶ Bases connected by a rotation U: $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$

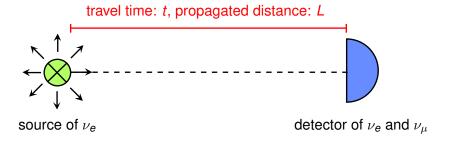
A quick review of neutrino mixing (II)

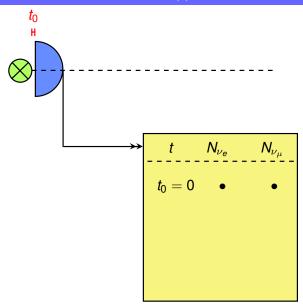
▶ *U* is a 3×3 rotation matrix (PMNS matrix):

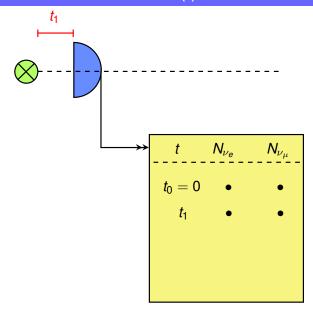
$$U = \left(egin{array}{ccc} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \ \end{array}
ight)$$

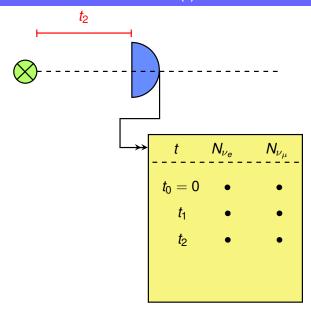

- Parametrise it with three angles and one CP-violating phase
- From solar, atmospheric, reactor, and accelerator experiments:

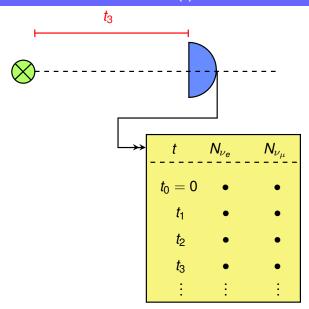

$$\theta_{12}\approx 37^\circ\,,\;\theta_{23}\approx 45^\circ\,,\;\theta_{13}\approx 9^\circ\,,\;\delta_{CP}$$
 unknown

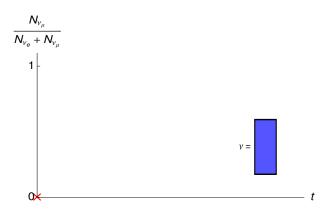

- The mass hierarchy is also unknown:
 - Normal hierarchy (NH): ν₁ is lightest
 - ► Inverted hierarchy (IH): ν₃ is lightest
 - fits to mixing paramters depend on hierarchy assumption

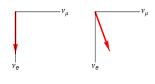

Flavor content of the mass eigenstates ν_1 , ν_2 , ν_3

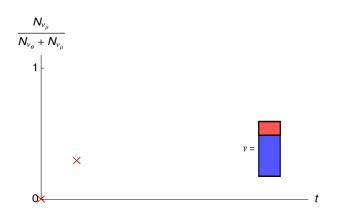

A different way to show this information is via ternary plots:

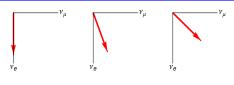


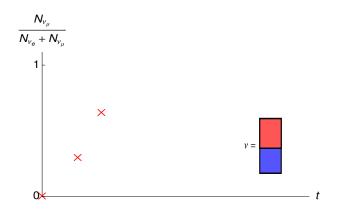


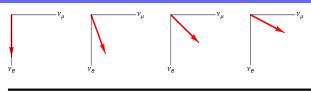




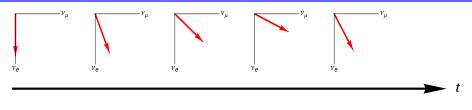


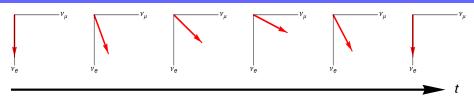


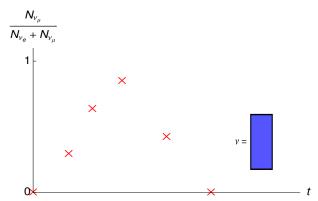


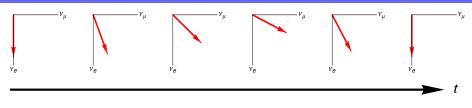


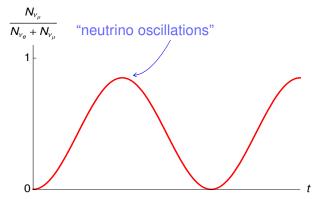












Flavor mixing in high-energy astrophysical neutrinos

A technicality:

$$P_{\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}} = \delta_{\alpha\beta} - 4\sum_{k>j} \operatorname{Re}\left(J_{\alpha\beta jk}\right) \sin^{2}\left(\frac{\Delta m_{kj}^{2}L}{4E}\right) \pm 2\sum_{k>j} \operatorname{Im}\left(J_{\alpha\beta jk}\right) \sin\left(\frac{\Delta m_{kj}^{2}L}{2E}\right)$$

- ▶ The Δm_{kj}^2 are very small: $\sim 10^{-4}$, 10^{-3} eV²
- ▶ Therefore, oscillations are very rapid
- They average out after only a few oscillations lengths:

$$\sin^2(\ldots) \to 1/2 \;,\;\; \sin(\ldots) \to 0$$

Hence, for astrophysical neutrinos:

$$P_{\overleftarrow{\nu}_{\alpha} \to \overleftarrow{\nu}_{\beta}} = \sum_{i=1}^{3} |U_{\alpha i}|^{2} |U_{\beta i}|^{2}$$

Flavor ratios

Neutrino production at the source via pion decay:

$$p\gamma o \Delta^+$$
(1232) $o \pi^+ n$ $\pi^+ o \mu^+
u_\mu o e^+
u_e ar{
u}_\mu
u_\mu$

- ▶ Flavor ratios at the source: $(f_e: f_\mu: f_\tau)_S \approx (1/3:2/3:0)$
- At Earth, due to flavor mixing:

$$f_{\alpha,\oplus} = \sum_{\beta} P_{\beta\alpha} f_{\beta,S}$$

$$(1/3:2/3:0)_S \xrightarrow{\text{flavor mixing, NH, best-fit}} (0.36:0.32:0.32)_{\oplus}$$

Other compositions at the source:

```
(0:1:0)_{S} \longrightarrow (0.26:0.36:0.38)_{\oplus} ("muon damped")

(1:0:0)_{S} \longrightarrow (0.55:0.26:0.19)_{\oplus} ("neutron decay")

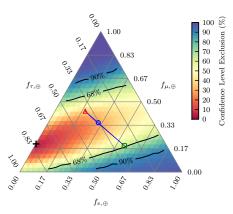
(1:1:0)_{S} \longrightarrow (0.40:0.31:0.29)_{\oplus} ("charmed decays")
```

How can IceCube identify flavor?

Below $E_{\nu} \sim$ 10 PeV, there are two event topologies:

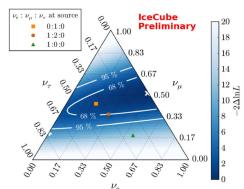
- ▶ Showers: generated by CC ν_e or ν_τ ; or by NC ν_x
- ▶ Muon tracks: generated by CC ν_{μ}

(Some muon tracks can be mis-reconstructed as showers)


At \gtrsim 10 PeV (no events so far), all of the above, plus:

- ▶ Glashow resonance: CC $\bar{\nu}_e e$ interactions at 6.3 PeV
- ▶ Double bangs: CC $\nu_{\tau} \rightarrow \tau \rightarrow \nu_{\tau}$

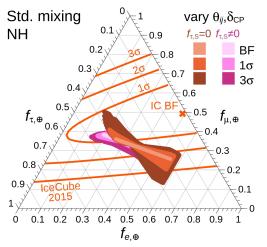
Flavor ratios must be inferred from the number of showers and tracks


Two IceCube analyses of flavor composition

Using contained events only

Best fit: (0:0.2:0.8)

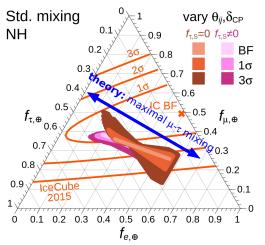
Using contained events + throughgoing muons



Best fit: (0.49 : 0.51 : 0)_⊕

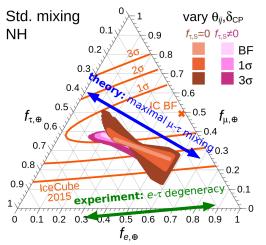
- Compatible with standard source compositions
- Bounds are weak need more data and better flavor-tagging

Flavor combinations at Earth from flavor mixing


But we do not really know the flavor composition at the source:

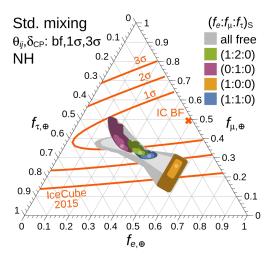
Std. mixing can access $only \sim 10\%$ of the possible combinations

Flavor combinations at Earth from flavor mixing

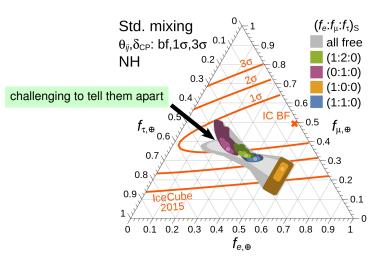

But we do not really know the flavor composition at the source:

Std. mixing can access $only \sim 10\%$ of the possible combinations

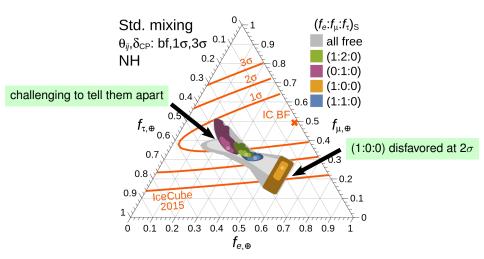
Flavor combinations at Earth from flavor mixing


But we do not really know the flavor composition at the source:

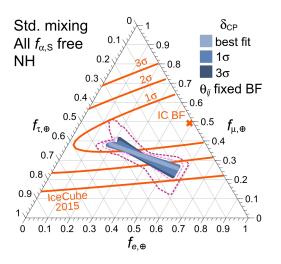
Std. mixing can access $only \sim 10\%$ of the possible combinations


Selected source compositions

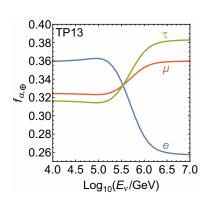
We can look at results for particular choices of ratios at the source:

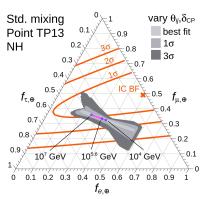

Selected source compositions

We can look at results for particular choices of ratios at the source:


Selected source compositions

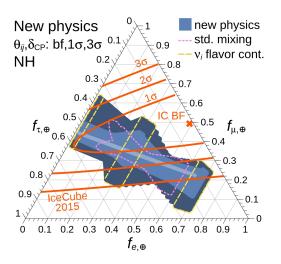
We can look at results for particular choices of ratios at the source:


Perfect knowledge of mixing angles

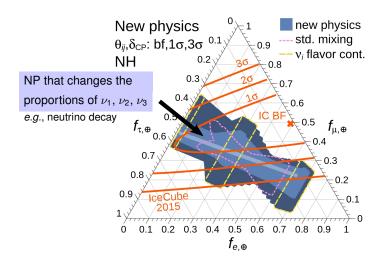

In a few years, we might know all the mixing parameters except δ_{CP} :

Energy dependence of the composition at the source

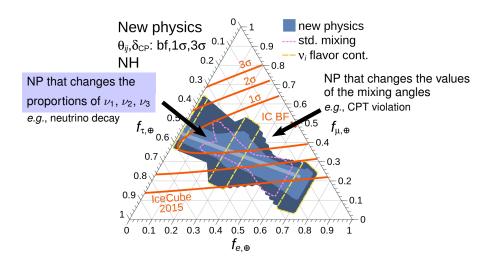
Different ν production channels are accessible at different energies:



- Equivalent to different sources types contributing to the diffuse flux
- Will be difficult to resolve


New physics (warning: work in progress)

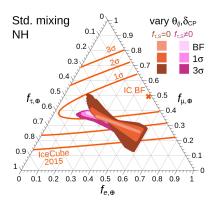
New physics could modify the flavor ratios at Earth:

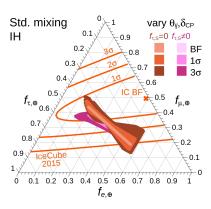

New physics (warning: work in progress)

New physics could modify the flavor ratios at Earth:

New physics (warning: work in progress)

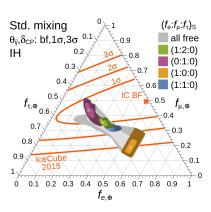
New physics could modify the flavor ratios at Earth:

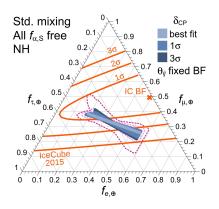


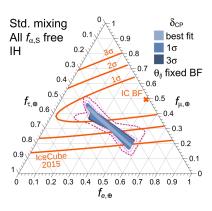

Conclusions ... and the future

- Flavor composition provides information about the sources
- \blacktriangleright Std. mixing can access only \sim 10% of the possible flavor combinations at Earth
- "Milder" new physics can access only 25% of flavor combinations
- It is challenging to think what lies beyond this region
- IceCube searches could use these theoretical considerations to improve constraints


Backup slides


Flavor combinations from flavor mixing: NH vs. IH




Selected source compositions: NH vs. IH

Perfect knowledge of mixing angles: NH vs. IH

