Gamma rays, cosmic rays, and neutrinos: windows into the ultra-high-energy Universe

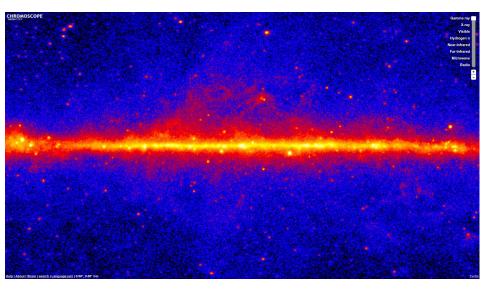
Mauricio Bustamante, PhD

Center for Cosmology and Astroparticle Physics (CCAPP)

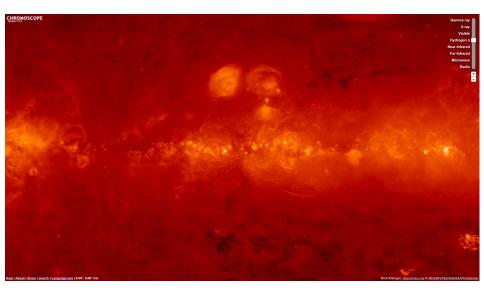
The Ohio Sate University

IV Workshop Internacional de Matemática, Física y Aplicaciones (WIMFA 2015)
Universidad Nacional del Callao, Lima
January 16, 2015

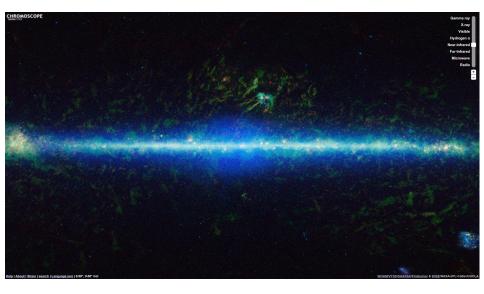
Milky Way in visible light (551, 658 nm \equiv 2.25, 1.88 eV):


Chromoscope – Nick Risinger, skysurvey.org

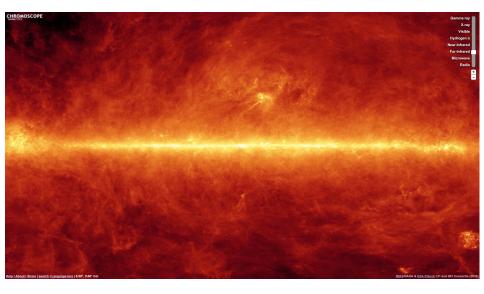
Milky Way in X rays (0.1 – 2 keV):


 ${\tt Chromoscope-ROSAT\ \&\ Nick\ Risinger,\ skysurvey.org}$

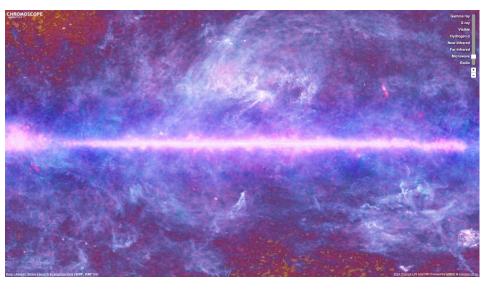
Milky Way in gamma rays (10 keV – 300 GeV):


Chromoscope – Fermi

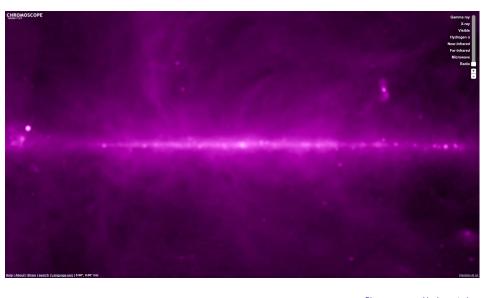
Milky Way in $H\alpha$ (656.3 nm \equiv 1.89 eV):


 ${\tt Chromoscope-Nick\ Risinger,\ WHAM\ /\ SHASSA\ /\ VTSS\ /\ Finkbeiner}$

Milky Way in **near infrared** (750–2500 nm \equiv 1.65–0.496 eV):


Chromoscope - WHAM / SHASSA / VTSS / Finkbeiner

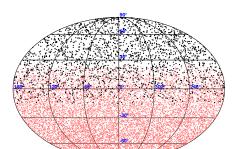
Milky Way in far infrared (10–100 μ m \equiv 124–12.4 meV):


Chromoscope – Fermi

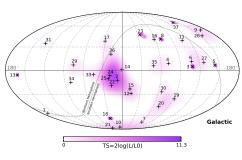
Milky Way in **microwaves** (0.35, 10 mm \equiv 3.54, 1.24 meV):

Chromoscope - Planck

Milky Way in radio (408 Mhz \equiv 1.69 meV):



But the Universe is **not** static *e.g.*, 500 gamma-ray bursts seen by the *Swift* satellite (2004–2013) –


Swift/NASA

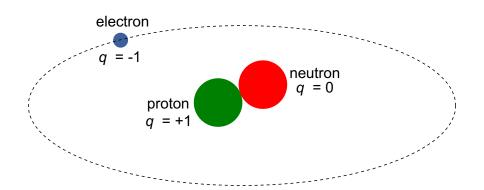
Also, light is **not** the only lens with which to see the Universe – there are other cosmic messengers:

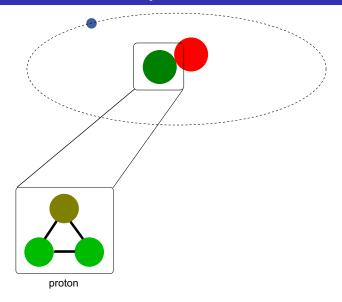
ultra-high-energy cosmic rays

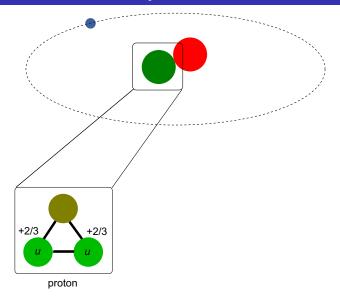
ultra-high-energy neutrinos

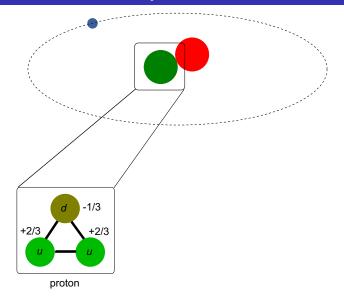
Auger/TA

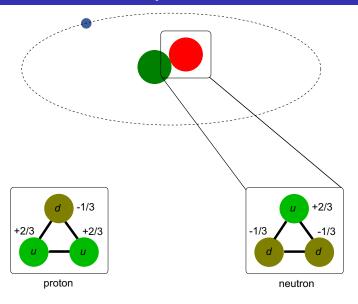
IceCube

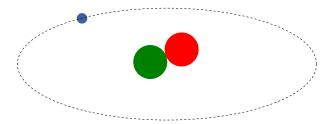

We will take a closer look at both of them ...

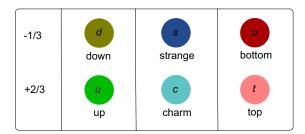

Plan of attack:

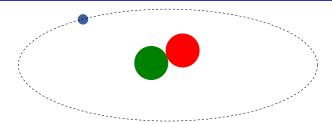

- Neutrinos what are they? where do they come from?
- 2 Cosmic rays what we know / don't know about them
- What are the sources of the UHE messengers?
- 4 The future more data, better detectors

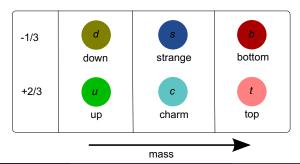

Neutrinos

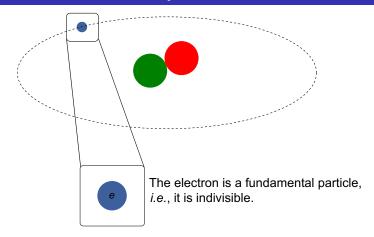

An atom of deuterium, ²₁H:

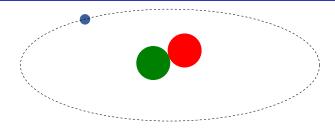




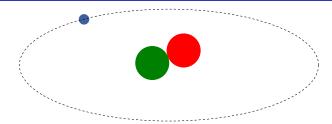


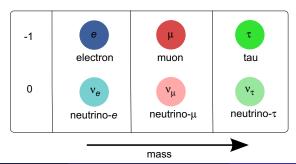



Six quarks, grouped in three families:



Six quarks, grouped in three families:

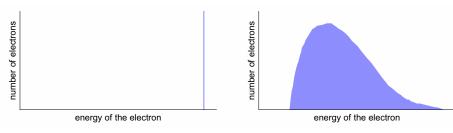



$$q = -1$$
 e electron $q = 0$ v_0

v_e

The electron and the neutrino are *leptons*.

Leptons are also grouped in three families:


Neutrinos – how where they discovered?

<1930: β decay was understood as

$$\textit{n}^{0} \rightarrow \textit{p}^{+} + \textit{e}^{-}$$

We expected to see ...

... but we found

Bohr proposed to weaken the principle of conservation of energy.

1930: Pauli postulated the neutrino to maintain energy and momentum conservation in β decay:

$$n^0
ightarrow p^+ + e^- + \overline{
u}_e$$

Neutrinos – how where they discovered?

1956: Cowan and Reines detect the $\bar{\nu}_e$ through

$$\bar{\nu}_e + p^+ \rightarrow n^0 + e^+$$

(1)
$$e^+ + e^- \rightarrow \gamma + \gamma$$
 (2) $n^0 + N_i \rightarrow \gamma + N_f$

The coincidence of both emissions reveals that a $\bar{\nu}_e$ interacted.

1962: Lederman, Schwartz, and Steinberger detect the u_{μ}

1975: τ lepton discovered at the Stanford Linear Accelerator Center

2000: detection of the ν_{τ} by the DONUT collaboration at Fermilab

1962: Lederman, Schwartz, and Steinberger detect the u_{μ}

1975: τ lepton discovered at the Stanford Linear Accelerator Center

2000: detection of the ν_{τ} by the DONUT collaboration at Fermilab

1962: Lederman, Schwartz, and Steinberger detect the u_{μ}

1975: τ lepton discovered at the Stanford Linear Accelerator Center

2000: detection of the ν_{τ} by the DONUT collaboration at Fermilab

Today, we know that neutrinos . . .

▶ are electrically neutral;

- 1962: Lederman, Schwartz, and Steinberger detect the u_{μ}
- 1975: τ lepton discovered at the Stanford Linear Accelerator Center
- 2000: detection of the ν_{τ} by the DONUT collaboration at Fermilab

- ▶ are electrically neutral;
- ▶ have tiny masses ($\sim 10^{-6} m_e$);

- 1962: Lederman, Schwartz, and Steinberger detect the u_{μ}
- 1975: τ lepton discovered at the Stanford Linear Accelerator Center
- 2000: detection of the ν_{τ} by the DONUT collaboration at Fermilab

- ▶ are electrically neutral;
- ▶ have tiny masses ($\sim 10^{-6} m_e$);
- interact only via the weak force
 (10⁻¹¹ times the intensity of the electromagnetic force);

- 1962: Lederman, Schwartz, and Steinberger detect the ν_{μ}
- 1975: τ lepton discovered at the Stanford Linear Accelerator Center
- 2000: detection of the ν_{τ} by the DONUT collaboration at Fermilab

- ▶ are electrically neutral;
- ▶ have tiny masses ($\sim 10^{-6} m_e$);
- ▶ interact only via the weak force (10⁻¹¹ times the intensity of the electromagnetic force);
- \blacktriangleright "oscillate": a ν_e may transform into a ν_μ or ν_τ .

- 1962: Lederman, Schwartz, and Steinberger detect the u_{μ}
- 1975: τ lepton discovered at the Stanford Linear Accelerator Center
- 2000: detection of the ν_{τ} by the DONUT collaboration at Fermilab

- ▶ are electrically neutral;
- ▶ have tiny masses ($\sim 10^{-6} m_e$);
- ▶ interact only via the weak force (10⁻¹¹ times the intensity of the electromagnetic force);
- \blacktriangleright "oscillate": a ν_e may transform into a ν_μ or ν_τ .

Neutrinos are generated in ...

Neutrinos are generated in ...

▶ nuclear processes in the Sun

Neutrinos are generated in ...

- ▶ nuclear processes in the Sun
- ▶ nuclear reactors

Neutrinos are generated in ...

- ▶ nuclear processes in the Sun
- ▶ nuclear reactors
- ▶ supernovae

Neutrinos are generated in ...

- ▶ nuclear processes in the Sun
- ▶ nuclear reactors
- ▶ supernovae
- ▶ particle accelerators

Neutrinos are generated in ...

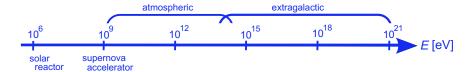
- nuclear processes in the Sun
- ▶ nuclear reactors
- ▶ supernovae
- ▶ particle accelerators
- ▶ high atmosphere

Neutrinos are generated in ...

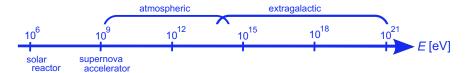
- nuclear processes in the Sun
- nuclear reactors
- ▶ supernovae
- ▶ particle accelerators
- ▶ high atmosphere
- ► extragalactic objects (*e.g.*, active galactic nuclei, *gamma-ray bursts*)

Neutrinos are generated in ...

- ▶ nuclear processes in the Sun
- ▶ nuclear reactors
- ▶ supernovae
- ▶ particle accelerators
- ▶ high atmosphere
- extragalactic objects(e.g., active galactic nuclei, gamma-ray bursts)


Even in the human body:

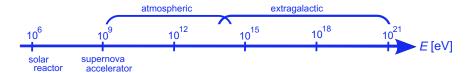
Potasium-40 is radioactive, with $\tau_{1/2} = 1.25 \times 10^9$ years


$$\begin{array}{l} e^{-} + \, ^{40}_{19} \text{K} \rightarrow \, ^{40}_{18} \text{Ar} + \nu_{e} \ \, (e^{-} \ \, \text{capture}) \\ ^{40}_{19} \text{K} \rightarrow \, ^{40}_{18} \text{Ar} + e^{+} + \nu_{e} + \gamma \ \, (\beta^{+} \ \, \text{decay}) \end{array} \right\} \quad 11.2\% \\ ^{40}_{19} \text{K} \rightarrow \, ^{40}_{20} \text{Ca} + e^{-} + \bar{\nu}_{e} \ \, (\text{decaimiento} \ \, \beta) \qquad \qquad \Big\} \quad 88.8\% \\ \end{array}$$

 $\sim 4400~(\nu_e + \bar{\nu}_e)~\text{emitted s}^{-1}~\text{by a 70 kg person}$

$$1~eV\approx 1.6\times 10^{-19}~J$$

$$1~\text{eV}/\text{c}^2\approx 1.7\times 10^{-36}~\text{kg}$$

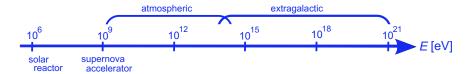


$$1~eV\approx 1.6\times 10^{-19}~J$$

$$1 \text{ eV}/c^2 \approx 1.7 \times 10^{-36} \text{ kg}$$

e.g.,

▶ 0.5 MeV: mass of the electron



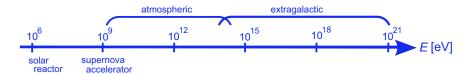
$$1~eV\approx 1.6\times 10^{-19}~J$$

$$1 \text{ eV}/c^2 \approx 1.7 \times 10^{-36} \text{ kg}$$

e.g.,

- ▶ 0.5 MeV: mass of the electron
- ▶ 1 GeV: mass of the proton/neutron

$$1~eV\approx 1.6\times 10^{-19}~J$$

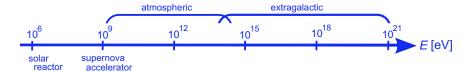

$$1 \text{ eV}/c^2 \approx 1.7 \times 10^{-36} \text{ kg}$$

e.g.,

▶ 0.5 MeV: mass of the electron

▶ 1 GeV: mass of the proton/neutron

▶ 1 TeV: kinetic energy of a flying mosquito

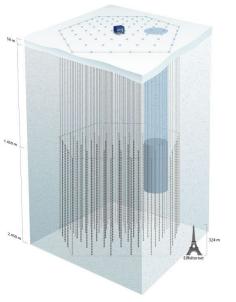


$$1~eV\approx 1.6\times 10^{-19}~J$$

$$1 \text{ eV}/c^2 \approx 1.7 \times 10^{-36} \text{ kg}$$

e.g.,

- ▶ 0.5 MeV: mass of the electron
- ▶ 1 GeV: mass of the proton/neutron
- ▶ 1 TeV: kinetic energy of a flying mosquito
- $\blacktriangleright \sim$ 624 EeV (6.24 \times 10 20 eV): energy needed to light a bulb of 100 W for 1 s



The higher the neutrino energy, the larger the probability to detect it.

Cross section ν –p (elastic):

$$\sigma_{
u
ho
ightarrow
u
ho}(E)pprox 6 imes 10^{-46}\left(rac{E}{1\ ext{MeV}}
ight)^2\ ext{cm}^2$$

probability of detection $\propto \sigma$

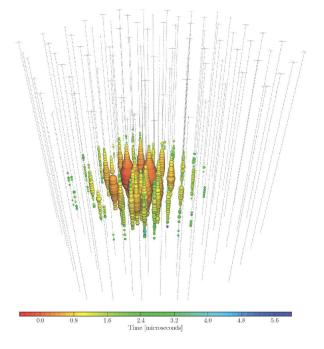
IceCube: km³ in-ice South Pole Čerenkov detector

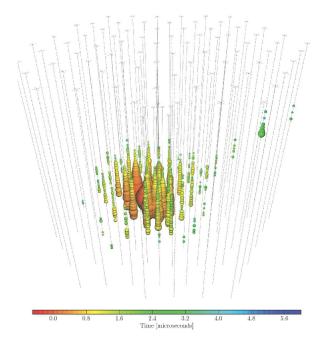
Neutrinos detected through νN interactions (N = n, p)

- Neutral current: all flavours produce hadronic showers
- ► Charged current: ν_{μ} 's leave muon tracks; $\nu_{e/\tau}$ produce showers

IceCube: km³ in-ice South Pole Čerenkov detector

Neutrinos detected through νN interactions (N = n, p)


- Neutral current: all flavours produce hadronic showers
- Charged current: ν_μ's leave muon tracks; ν_{e/τ} produce showers



IceCube: km³ in-ice South Pole Čerenkov detector

Neutrinos detected through νN interactions (N = n, p)

- Neutral current: all flavours produce hadronic showers
- ► Charged current: ν_{μ} 's leave muon tracks; $\nu_{e/\tau}$ produce showers

The era of neutrino astronomy has begun!

– IceCube (2010-2013) detected 37 events with 30 TeV – 2 PeV

"Bert", 1.04 PeV

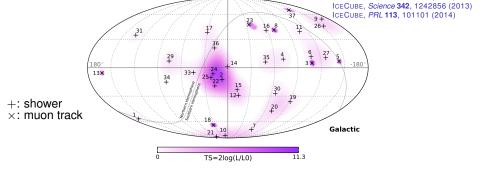
"Ernie", 1.14 PeV

"Big Bird", 2 PeV

... and 34 more events < 385 TeV

The era of neutrino astronomy has begun!

– IceCube (2010-2013) detected 37 events with 30 TeV – 2 PeV


Flux compatible with extragalactic origin (Waxman & Bahcall 1997):

$$E^2\Phi_{\nu} = (0.95 \pm 0.3) \times 10^{-8} \; \text{GeV cm}^{-2} \; \text{s}^{-1} \; \text{sr}^{-1}$$
 (per flavour)

The era of neutrino astronomy has begun!

– IceCube (2010-2013) detected 37 events with 30 TeV – 2 PeV

Arrival directions compatible with an isotropic distribution –

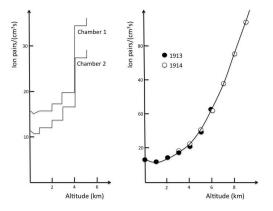
no association with sources found yet

ICECUBE, PRL 111, 021103 (2013)

Cosmic rays

Cosmic rays discovered

1911–1913: the Austrian physicist Victor Hess made balloon flights up to an altitude of 5.3 km



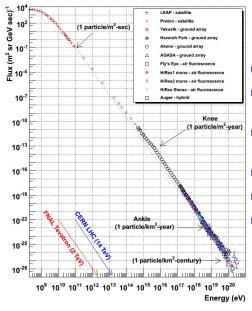
What he found would eventually be known as cosmic rays

Cosmic rays discovered

What did Hess find?

- lacktriangleright ionising radiation decreases up to \sim 1 km of altitude
- then it rises!

... The ionising radiation was not coming from Earth (nor the Sun!)


Cosmic rays discovered

Quoting Hess:

"The results of my observation are best explained by the assumption that a radiation of very great penetrating power enters our atmosphere from above."


1920s: Robert Millikan coined the term "cosmic ray"

1936: Nobel Prize in Physics 1936 to Hess, "for his discovery of cosmic radiation"

- they are mostly protons
- they span 12 orders of magnitude in energy
- spectrum is a power-law with two breaks: knee and ankle
- low energy: from the Sun
- higher energy: from Milky Way
- highest energy: extragalactic?

Our cosmic-ray detectors have also changed:

Our cosmic-ray detectors have also changed:

Our cosmic-ray detectors have also changed:

UHECRs - discovery

1962: discovery of UHECRs (ultra-high energy cosmic rays) at the Park Ranch Experiment, New Mexico

 $> 10^{18} \; \mathrm{eV} - \mathrm{most}$ energetic particles in known Universe

UHECRs – discovery

"Oh-my-God particle":
$$\sim 3 \cdot 10^{20} \text{ eV} \equiv 50 \text{ J}$$
(Fly's Eye experiment, Utah, 1991)

This is equivalent to ...

- ▶ a baseball (142 g) travelling at 94 km h⁻¹; or
- ▶ a football (410 g) travelling at 55 km h⁻¹,
- \dots but concentrated in a volume of radius 1 fm $\equiv 10^{-15}~\text{m}$

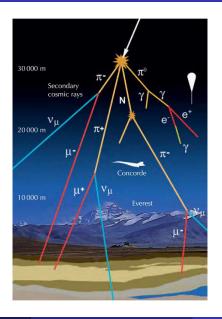
Approximate speed:

$$0.9999999999999999999951c = (1 - 4.9 \cdot 10^{-24})c$$

 \sim 40 million times higher than a 7 TeV proton at the LHC

They are *very* rare: only a few dozen observed so far

UHECRs – discovery


After fifty years, UHECRs are still a mystery:

- where are they produced?
- how are they produced?
- what are they (protons, atomic nuclei)?

We are now in a position to start giving definite answers

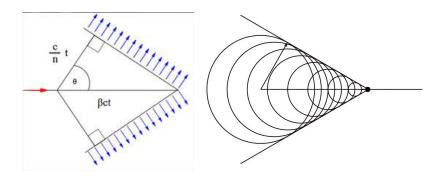
Neutrinos (and gamma-rays) are key to solving the mystery

UHECRs – giant air showers and detection

UHECRs – giant air showers and detection

The flux of UHECRs is *very* low: 1 particle / km² / century

Modern experiments detect the secondary particles of the air showers, not the primary


Two main detection methods:

- in water: Cherenkov light inside water tanks
- in air: detection of fluorescence emission

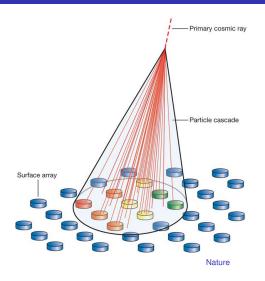
Let us take a short detour about Cherenkov radiation ▶

Cherenkov radiation

Occurs when a charged particle travels faster than light in a medium:

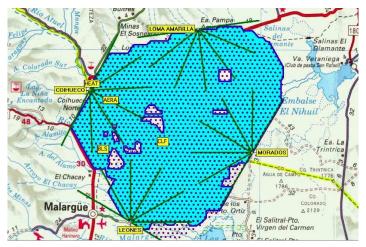

Cherenkov radiation

Cherenkov radiation



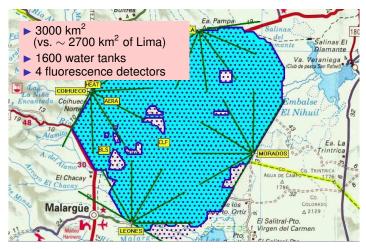
Surface CR detectors

Pierre Auger Observatory


Surface CR detectors

Surface CR detectors

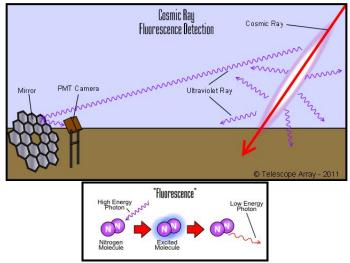
We now have much larger detectors


- e.g., Pierre Auger Observatory, in Argentina

Surface CR detectors

We now have much larger detectors

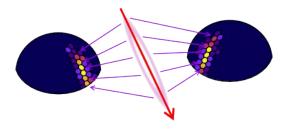
- e.g., Pierre Auger Observatory, in Argentina


Surface CR detectors

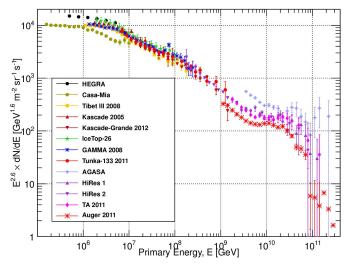
We now have much larger detectors

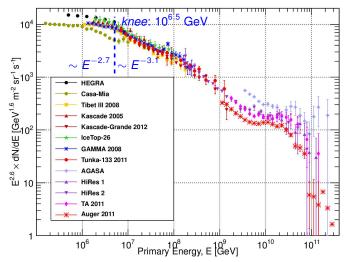
- e.g., Pierre Auger Observatory, in Argentina

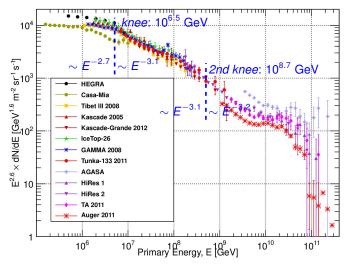
Fluorescence detectors

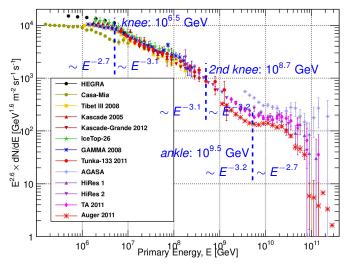

At Auger: 330-380 nm UV

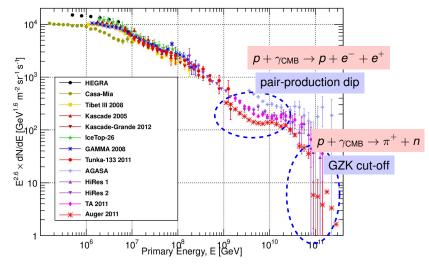
Fluorescence detectors




Telescope Array


Fluorescence detectors




Telescope Array

Detour: the cosmic microwave background (CMB)

Shortly after the Big Bang, the Universe was so hot (> 4000 K) that the following process occurred back and forth:

$$H + \gamma \longleftrightarrow p + e^- \ (E_{\gamma} = 13.6 \text{ eV})$$

Recombination epoch: 378 000 years later (z = 1100)

- cooled photons are no longer able to ionise the hydrogen

Today, these first photons are in the microwave range: cosmic microwave background (CMB)

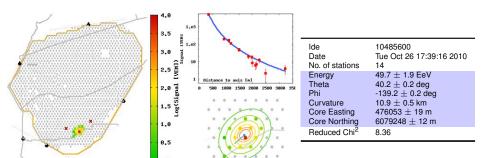
The GZK cut-off

GZK ≡ Greisen-Zatsepin-Kuzmin (1966)

The process $p + \gamma_{\text{CMB}} \rightarrow \Delta^+$ (1232) $\rightarrow \pi^+ + n$ has a threshold

$$\textit{E}_{\textrm{GZK}}^{\textrm{th}} = \frac{\textit{m}_{\pi} \left(\textit{m}_{p} + \textit{m}_{\pi}/2\right)}{\epsilon_{\textrm{CMB}}} \approx 6.8 \cdot 10^{10} \left(\frac{\epsilon_{\textrm{CMB}}}{10^{-3} \textrm{ eV}}\right) \textrm{ GeV}$$

Survival probability of a 10^{11} GeV propagating for a distance d:

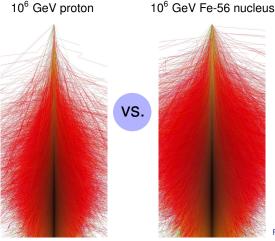

$$p(d) pprox \exp\left(rac{-d}{6.6 ext{ Mpc}}
ight) \Rightarrow p(d) < 10^{-4} ext{ for } d = 50 ext{ Mpc}$$

Two conclusions

- 1 The maximum CR energy is $\sim 10^{11}~\text{GeV}$
- 2 UHECRs are created relatively close to us (\lesssim 50 Mpc)

UHECRs – finding their composition

This is what a UHE event looks like in Auger:

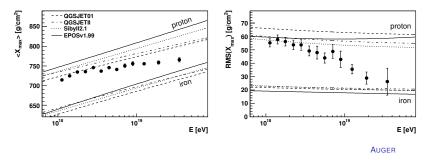

Problem:

So how is the identity of the primary reconstructed from this?

UHECRs – finding their composition

Answer:

use longitudinal air shower development information from the fluorescence detectors



F. SCHMID, UNIV. LEEDS

UHECRs – finding their composition

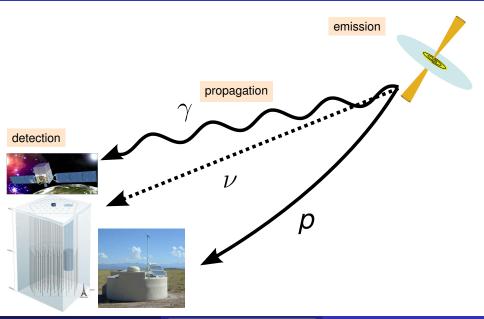
 $\langle x_{\text{max}} \rangle$: average value of x_{max} among all showers

Compare these data to the simulated $\langle x_{\text{max}} \rangle$ assuming a proton or Fe primary:

There is a tendency towards heavier composition at very high energies

Short answer – we do not know (yet)

Short answer – we do not know (yet)


Longer answer – we do not know, but we have a few good candidates

Short answer – we do not know (yet)

Longer answer – we do not know, but we have a few good candidates

Let us look at some general constraints on the nature of the sources, and some candidates ▶

Emission-propagation-detection

Hillas criterion: UHECR sources must be extragalactic

Two considerations:

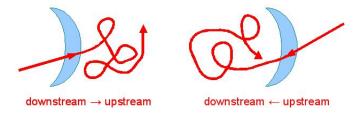
- 1 Charged particles (*Z*) are assumed to be accelerated by intense magnetic fields in astrophysical sources
- 2 For the acceleration to be mantained, the gyroradius should be smaller than the size of the acceleration region


Larmor radius:
$$R_L = \frac{1.1}{Z} \left(\frac{E}{\text{EeV}} \right) \left(\frac{B}{\mu \text{G}} \right)^{-1}$$

Hillas criterion: $R_L < R$

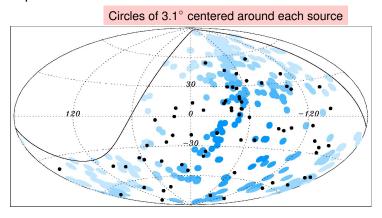
This limits the maximum energy:

$$E_{\text{max}} \simeq Z \left(\frac{B}{\mu \text{G}} \right) \left(\frac{R}{\text{kpc}} \right) \cdot 10^9 \text{ GeV}$$


Hillas criterion: UHECR sources must be extragalactic

How are UHECRs accelerated at the sources?

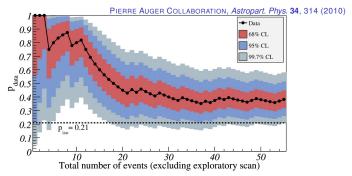
First order Fermi acceleration:


- Relativistic particles, supersonic magnetic shocks
- ► Energy gain per crossing ∝ v/c
- Average energy after one collision: $E = \beta E_o$

Same energy gain in downstream → upstream and upstream → downstream crossing

UHECRs – correlations with known sources

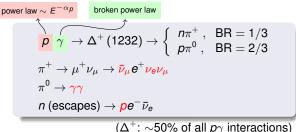
- 69 CRs with > 55 EeV observed at Auger
- Compare arrival directions to positions of 318 known AGN within 75 Mpc

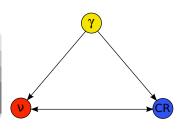

PIERRE AUGER COLLABORATION, Astropart. Phys. 34, 314 (2010)

UHECRs – correlations with known sources

Degree of correlation: $p_{data} = k/N$

k: number of UHECRs correlated to sources

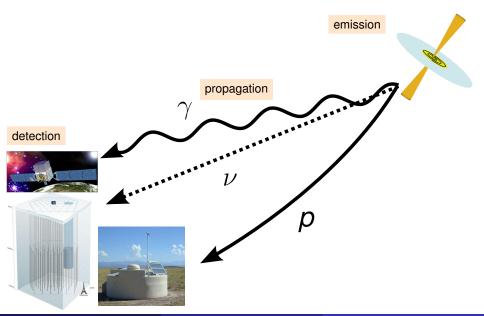

N: total number of UHECRs

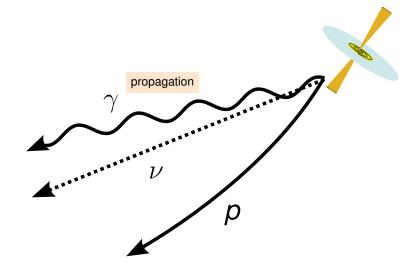


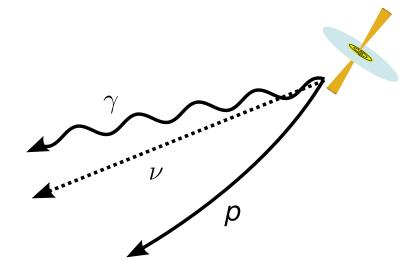
Auger found $p_{data} = 0.38^{+0.07}_{-0.06}$ – inconclusive when compared to the value for an isotropic distribution of sources, $p_{iso} = 0.21$

Producing the UHE ν 's, CRs, γ rays

Joint production of UHECRs, ν 's, and γ 's:

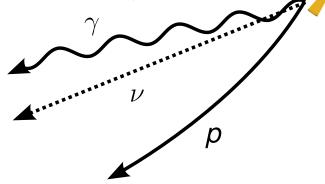


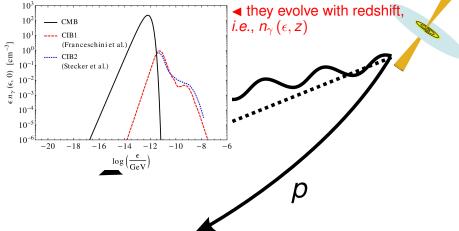

After propagation, with flavour mixing:

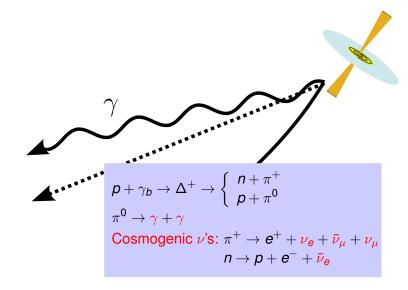

$$u_{\mathsf{e}}:
u_{\mu}:
u_{ au}: \mathsf{p} = \mathsf{1}: \mathsf{1}: \mathsf{1}: \mathsf{1}$$
 ("one u_{μ} per cosmic ray")

CR emission by *n* escape only is now strongly disfavoured

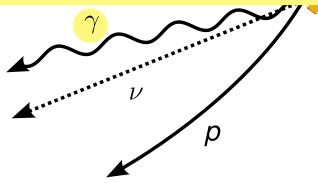
ICECUBE COLL., *Nature* **484**, 351 (2012) AHLERS ET AL. *Astropart. Phys.* **35**, 87 (2011)





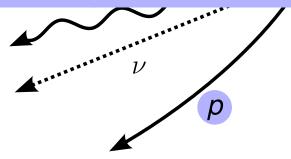

Because of the cosmological expansion:

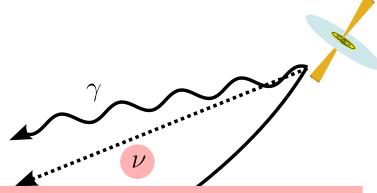
energy at Earth =
$$\frac{\text{energy at production time}}{1 + z}$$


Cosmological photon backgrounds:

- γ 's and e^{\pm} 's dump energy into e.m. cascades through
 - ▶ pair production, $\gamma + \gamma_b \rightarrow e^+ + e^-$
 - ▶ inverse Compton scattering, $e^{\pm} + \gamma_b \rightarrow e^{\pm} + \gamma$

Lower-energy (GeV-TeV) gamma-rays detected by Fermi-LAT




p's are deflected by extragalactic magnetic fields

⇒ except for the most energetic ones, they are Pierre Auger found weak correlation not expected to point back to the sources with known AGN positions

They lose energy through:

- ▶ pair production, $p + \gamma_b \rightarrow p + e^+ + e^-$ depend on the redshift evolution
 - of the cosmological γ backgrounds
- ightharpoonup photohadronic interactions, p_{γ_b}

Initial UHE ν flavour fluxes: ν_e : ν_μ : ν_τ = 1 : 2 : 0

Probability of $\nu_{\alpha} \rightarrow \nu_{\beta}$ transition: $P_{\alpha\beta}(E_0, z)$

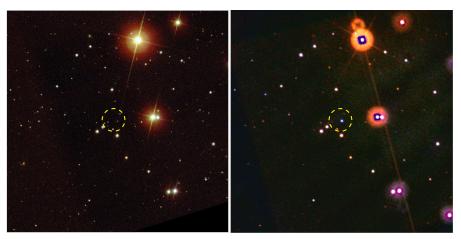
Flavour oscillations redistribute the fluxes

– at Earth: ν_e : ν_μ : $\nu_\tau \approx$ 1 : 1 : 1 (might be changed by exotic physics!)

What makes a good candidate UHECR source?

If the sources of UHECRs are extragalactic, they must satisfy:

- 1 Sources should produce protons with a local (z = 0) energy injection input of $\approx 10^{44}$ erg Mpc⁻³ yr⁻¹
- 2 Density of sources should be $n_s > 10^{-4} \text{ Mpc}^{-3}$
- 3 Power output of individual sources should satisfy $L \gtrsim 10^{45.5} \; \Gamma^2 \; \text{erg s}^{-1}$
- 4 Plasma flows should be relativistic: $\Gamma \gtrsim 100 \, (\delta t/10 \, \text{ms})^{-1/4}$


This leaves as candidates:

- (some) AGN flares
- ▶ GRBs, with typical $L \sim 10^{52} \text{ erg s}^{-1}$, $\Gamma \gtrsim 300$

E. WAXMAN IN Astronomy at the Frontiers of Science, Springer (2011)

Gamma-ray bursts

What does a GRB look like? e.g., GRB060218 seen by Swift

SDSS, SWIFT COLLAB., SLOAN FOUNDATION, NSF, NASA

Gamma-ray bursts – what are they?

GRBs: the most luminous explosions in the Universe

- brief flashes of gamma rays: from 0.1 s to few 100's s
- isotropically distributed in the sky
- ▶ they are far: most occur at \sim 1 Gpc from us ($z \approx 2$)
- they are rare: $\sim 0.3 \ \mathrm{Gpc^{-3}} \ \mathrm{yr^{-1}}$
- two populations:
 - short-duration (< 2 s): neutron starneutron star or NS-black hole mergers
 - long-duration (> 2 s): associated to hypernovae
- powered by matter accretion onto a black hole

GRBs – good candidates for UHE CR & ν sources

GRBs are among the best candidate sources for CRs and ν 's:

- radiated energy of $\sim 10^{52} 10^{53}$ erg
- ightharpoonup intense magnetic fields of $\sim 10^5~{
 m G}$
- ▶ magnetically-confined p's shock-accelerated to ~ 10¹² GeV
- ▶ plus: low backgrounds (for ν 's) due to small time window

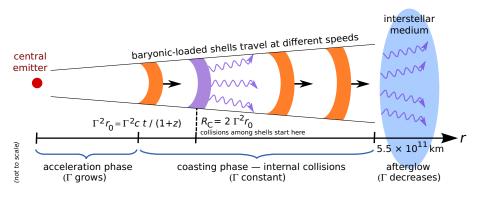
Problem: experiments (IceCube, ANTARES) are starting to strongly constrain the simplest joint emission models

Solution: we need to build more realistic models!

GRBs – good candidates for UHE CR & ν sources

GRBs are among the best candidate sour

- ightharpoonup radiated energy of $\sim 10^{52}-10^{53}$ erg
- intense magnetic fields of $\sim 10^5$ G
- $\left\{ \begin{array}{ll} 10^{20} \ {\rm erg} & {\rm H\ bomb} \\ 10^{26} \ {\rm erg} & {\rm killer\ asteroid} \\ 10^{40} \ {\rm erg} & {\rm Death\ Star} \\ 10^{33} \ {\rm erg\ s^{-1}} & {\rm Sun} \\ 10^{41} \ {\rm erg\ s^{-1}} & {\rm supernova} \\ 10^{45} \ {\rm erg\ s^{-1}} & {\rm galaxy} \end{array} \right.$
- ▶ magnetically-confined p's shock-accelerated to ~ 10¹² GeV
- ightharpoonup plus: low backgrounds (for ν 's) due to small time window


Problem: experiments (IceCube, ANTARES) are starting to strongly constrain the simplest joint emission models

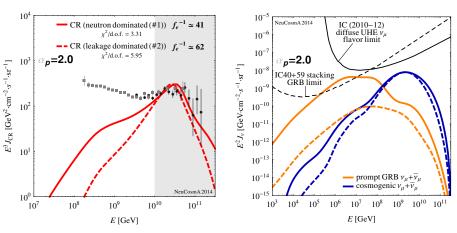
Solution: we need to build more realistic models!

GRBs explained – the fireball model

Fireball model: our current paradigm of how a GRB works

 relativistically-expanding blobs of plasma collide with each other and, in the process, emit UHE particles

GRBs explained – the fireball model


Let's look at a sample animated fireball -

▲ shell has not collided

shell has collided many times A

<u>UHE ν and CR fluxes</u> at Earth from GRBs

Diffuse UHECR and neutrino predictions –

P. BAERWALD, MB, AND W. WINTER, *ApJ* **768**, 186 (2013) P. BAERWALD, MB, AND W. WINTER, *Astropart. Phys.* **62**, 66 (2015) **See also**: H. HE *et al.*, *ApJ* **752**, 29 (2012)

The future

The future

Why is *now* a good time to study this?

better, bigger detectors + loads of data + bright future

UHECRs

- ► Auger: 69 events > 57 EeV
- ► Telescope Array: 72 events
- ► surface + fluorescence
- ▶ from space: JEM-EUSO (?) - × 10 event rate

GRBs

- Fermi: ~ 250 GRBs yr⁻¹ in 8 keV − 40 MeV
- $ho \sim$ 12 GRBs yr⁻¹ in 20 MeV 300 GeV
- ► different wavelengths: INTEGRAL, *Swift*
- ▶ 1000's GRBs detected so far

neutrinos

- ► IceCube: 1 km³ Antarctic ice
- ▶ detection: νN interactions
- ➤ sensitive to predicted UHE astrophysical flux
- ► see sources after 10-15 yr?

The future

- Auger will continue taking data:
 - better composition determination
 - updates on correlation with sources
 - more precise determination of the spectrum
- Perhaps Auger North will be built
- ► Hopefully a satellite to observe atmospheric fluoresence, *e.g.*, JEM-EUSO on the ISS
- IceCube has started detecting EHE events: correlations with GRBs in the future?
- The KM3NeT neutrino telescope might be built in the Mediterranean Sea

The future for UHECR and neutrino research looks bright Stay tuned!

Questions, etc.: bustamanteramirez.1@osu.edu

Ongoing and coming events

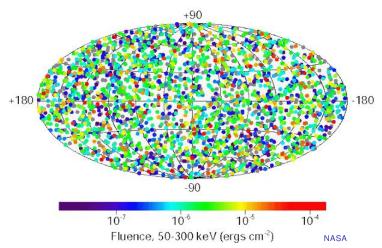
- Jueves 12:30 p.m., Auditorio de Física PUCP
- Ponentes nacionales e internacionales
- Diversas áreas de Física, otras ciencias e ingenierías
- ► Transmisión en vivo: envivo.pucp.edu.pe/fisica
- > cien coloquios grabados
- Página web: sites.google.com/site/fisicapucp/
- ► Ingreso libre para todos
- Facebook y Twitter
 - coloquios@fisica.pucp.edu.pe

I Escuela Peruana de Física de Altas Energías y Cosmología (EPFAEC 2015)

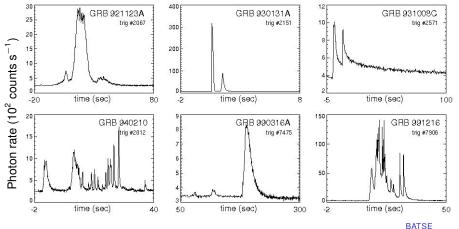
- ▶ 22–26 de Junio 2015
 - Dirigido a estudiantes, profesores e investigadores en Física
- Lugar: UNI
- Tres expertos internacionales
- Clases + sesiones de discusión:
 - física de partículas y teoría cuántica de campos
 - física de neutrinos
 - cosmología
- Sin costo de inscripción
- Registro hasta 30 de Abril
- Más información y registro en línea: fc.uni.edu.pe/epfaec2015

Backup slides

GRBs – an accidental discovery

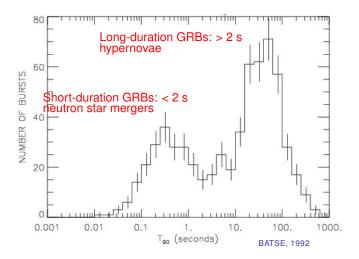

After the 1963 Nuclear Test Ban Treaty, the U.S. launched six pairs of *Vela* satellites:

- ► They carried X-ray, gamma-ray, and neutron detectors
- Vela 5a-b had enough spatial resolution to pinpoint the direction of events
- Intense gamma-ray emission from a nuclear explosion lasts $\lesssim 10^{-6} \, \text{s} \dots$
- ...however, longer-lasting emissions were detected


GRBs studied

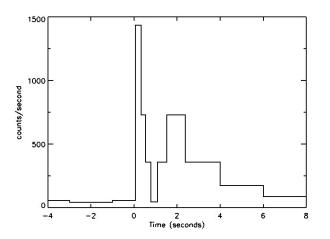
Dedicated missions were flown – e.g., BATSE detected 2704 GRBs between 1991 and 2000

GRBs studied


GRB light curves come in different shapes:

variability timescale (width of pulses) $\equiv t_{v} \approx 1 \text{ ms}$

GRBs – two different populations


Two populations of GRBs:

T₉₀: time during which 90% of gamma-ray energy is recorded

GRBs - an accidental discovery

First GRB detected: July 2, 1967, 14:19 UTC

Detected by Vela 3, 4a, 4b (found on archival data)

Particle emission from a collision

In a collision, UHE protons, photons, and neutrinos are emitted:

$$\underbrace{N_p'\left(E_p'\right)}_{\text{proton density at the source [GeV$^{-1}$ cm$^{-3}]} \underbrace{N_\gamma'\left(E_\gamma'\right)}_{\text{photon density at the source}}$$

ejected neutrino spectrum [GeV⁻¹ cm⁻³ s⁻¹]

► From Fermi shock acceleration:
$$N_{D}'(E_{D}') \propto E_{D}'^{-\alpha_{D}} e^{-E_{D}'/E_{D,\max}'}$$

▶ Photon density at source has same shape as observed:

$$\textit{N}_{\gamma}'\left(\textit{E}_{\gamma}'\right) = \left\{ \begin{array}{ll} \left(\textit{E}_{\gamma}'/\textit{E}_{\gamma,\text{break}}'\right)^{-\alpha_{\gamma}} &, \; \textit{E}_{\gamma,\text{min}}' \leq \textit{E}_{\gamma}' < \textit{E}_{\gamma,\text{break}}' \\ \left(\textit{E}_{\gamma}'/\textit{E}_{\gamma,\text{break}}'\right)^{-\beta_{\gamma}} &, \; \textit{E}_{\gamma}' \geq \textit{E}_{\gamma,\text{break}}' \\ 0 &, \; \text{otherwise} \end{array} \right.$$

$$lpha_{\gamma}=$$
 1, $eta_{\gamma}=$ 2.2, $m{E}'_{\gamma, ext{min}}=$ 0.2 eV, $m{E}'_{\gamma, ext{break}}=$ 1 keV

Particle emission from a collision

Normalise the densities at the source – for one collision:

► Photons:

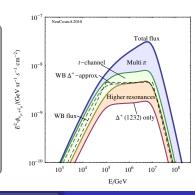
$$\underbrace{\int E_{\gamma}' \; N_{\gamma}' \left(E_{\gamma}' \right) \; dE_{\gamma}'}_{\text{total energy density in photons}} = \frac{E_{\gamma-\text{sh}}'^{\text{iso}}}{V_{\text{iso}}'}$$

baryonic loading (energy in p's / energy in e's + γ 's), e.g., 10

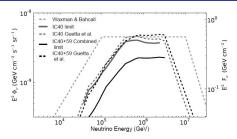
Protons:

$$\underbrace{\int E_{p}' \ N_{p}' \left(E_{p}' \right) \ dE_{p}'}_{\text{total energy density in protons}} = \underbrace{\frac{1}{f_{e}}}_{\frac{1}{f_{e}}} \frac{E_{\gamma-\text{sh}}^{\prime \text{iso}}}{V_{\text{iso}}'}$$

Particle emission from a collision


NeuCosmA calculates the injected/ejected spectrum of secondaries $(\pi, K, n, \nu, \text{ etc.})$: $x \equiv E'/E'_{\rho}$ $y \equiv E'_{\rho}E'_{\gamma}/\left(m_{\rho}c^2\right)$

$$Q'\left(E'\right) = \int_{E'}^{\infty} \frac{dE'_{p}}{E'_{p}} N'_{p}\left(E'_{p}\right) \int_{0}^{\infty} c \ dE'_{\gamma} \ N'_{\gamma}\left(E'_{\gamma}\right) \frac{R}{R} \left(x, y\right)$$
response function

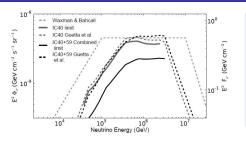

R contains cross sections, multiplicities for different channels

What does NeuCosmA include?

- extra K, n, π^- , multi- π production modes
- synchrotron losses of secondaries
- adiabatic cooling
- full photon spectrum
- neutrino flavour transitions

The neutron model under tension?

IceCube Collaboration:


 \blacktriangleright ν flux normalised to GRB γ fluence:

$$\int_{0}^{\infty} \textit{dE}_{\nu} \textit{E}_{\nu} \textit{F}_{\nu} \left(\textit{E}_{\nu} \right) \propto \int_{1 \, \text{keV}}^{10 \, \text{MeV}} \textit{d}\varepsilon_{\gamma} \varepsilon_{\gamma} \textit{F}_{\gamma} \left(\varepsilon_{\gamma} \right)$$

- ightharpoonup quasi-diffuse ν flux from 117 GRBs
- analytical calculation in tension with upper bounds

```
ICECUBE COLL., Nature 484, 351 (2012)
AHLERS ET AL. Astropart. Phys. 35, 87 (2011)
GUETTA ET AL. Astropart. Phys. 20, 429 (2004)
```

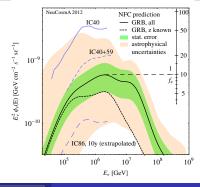
The neutron model under tension?

More detailed particle physics (NeuCosmA):

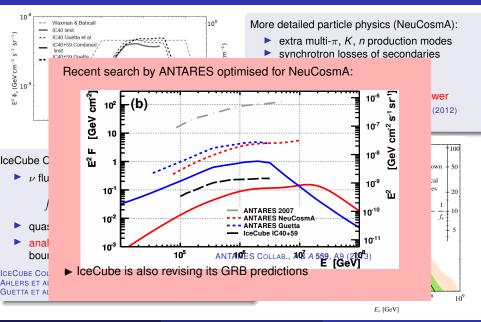
- ightharpoonup extra multi- π , K, n production modes
- synchrotron losses of secondaries
- adiabatic cooling
- full photon spectrum, etc.

u flux \sim one order of magnitude lower

BAERWALD, HÜMMER, WINTER, *PRL* **108**, 231101 (2012) See also: HE, LIU, WANG, *ApJ* **752**, 29 (2012)


IceCube Collaboration:

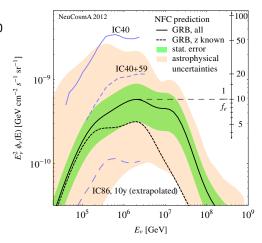
• ν flux normalised to GRB γ fluence:


$$\int_{0}^{\infty} \textit{dE}_{\nu} \textit{E}_{\nu} \textit{F}_{\nu} \left(\textit{E}_{\nu} \right) \propto \int_{1 \; \text{keV}}^{10 \; \text{MeV}} \textit{d}\varepsilon_{\gamma} \varepsilon_{\gamma} \textit{F}_{\gamma} \left(\varepsilon_{\gamma} \right)$$

- quasi-diffuse ν flux from 117 GRBs
- analytical calculation in tension with upper bounds

ICECUBE COLL., *Nature* **484**, 351 (2012) AHLERS ET AL. *Astropart. Phys.* **35**, 87 (2011) GUETTA ET AL. *Astropart. Phys.* **20**, 429 (2004)

The neutron model under tension?



The new prediction of the quasi-diffuse GRB ν flux

- Same n = 117 GRBs, effective area, and parameters as used by the IC-40 analysis
- ► Calculate the associated neutrino flux for each burst and the stacked flux F_{ν} (E_{ν})
- Quasidiffuse flux:

$$\phi_{\nu}\left(\textit{E}_{\nu}\right) = \textit{F}_{\nu}\left(\textit{E}_{\nu}\right)\frac{1}{4\pi}\frac{1}{n}\frac{667 \text{ bursts}}{\text{yr}}$$

- Statistical uncertainty: extrapolation of a few bursts to a quasidiffuse flux
- Astrophysical uncertainty:
 - $0.001 \le t_V [s] \le 0.1$
 - ► 200 < Γ < 500
 - ▶ $1.8 \le \alpha_p \le 2.2$
 - $0.1 \le \epsilon_e/\epsilon_B \le 10$

S. HÜMMER, P. BAERWALD, AND W. WINTER, *Phys. Rev. Lett.* **108**, 231101 (2012)